Skip to main content
Log in

A Comparison on Biodegradation Behaviour of Polylactic Acid (PLA) Based Blown Films by Incorporating Thermoplasticized Starch (TPS) and Poly (Butylene Succinate-co-Adipate) (PBSA) Biopolymer in Soil

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The comparative study of biodegradation of various blown films obtained from Poly (lactic) acid (PLA) has been studied via soil burial method. A total of 3-different types of films prepared from neat PLA and the reactive blends containing poly butylenes succinate-co-adipate (PBSA), and thermoplasticized starch (TPS); namely VPLA, PLA/PBSA, PLA/TPS respectively were the subjects of investigation. Several analytical techniques including weight loss method and analysis of mechanical properties were performed in each seven days interval until ninety days to elucidate the biodegradation in soil. The tensile modulus of VPLA and PLA/PBSA blown films were deteriorated to the tune of 60.32% and 71.28% respectively within 28 days, while PLA/TPS blown films recorded a significant reduction of 75.31% in the modulus value within 21 days of soil exposure compared to unexposed blown film samples. Similarly, blown films of PLA/TPS reported the highest rate of weight loss in the order of 40.06% in 90 days of soil burial with an estimated half-life of 103 days in soil environment compared to its counterparts. The depletion in both mechanical properties and weight of the film samples suggesting the occurrence of biodegradation in the real soil environment. Scanning electron microscopy (SEM) revealed the formation of coarse morphology for all three types of soil buried samples which trace of microbial action appeared on PLA/TPS films. Fourier transform infrared microscope (FTIR) showed the decrease in carbonyl index and variation in the intensities of carbonyl and hydroxyl peaks irrespective of the film samples after 90 days of soil exposure. Gel permeation chromatography (GPC) documented reduction in molecular weight and variation in polydispersity index (PDI) of post-exposed soil samples. The elemental analysis exhibited that the percentage of organic carbon and hydrogen content of all the films decreased while the oxygen percentage increased after soil burial due to the biodegradation of film specimens. Both Differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD) reported increase in crystallinity for soil exposed samples indicating the initiation of degradation kinetics preferably at the amorphous region of film composition. It has also been inferred that the biodegradation mechanism of VPLA and PLA/PBSA blown films predominantly driven by hydrolysis of ester bond. Contrastingly, the biodegradation kinetics in case of PLA/TPS film has been proceeded with microbial assimilation of TPS component which further thrived on hydrolysis of PLA component of the blown film system.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Palai B, Mohanty S, Nayak SK (2020) Synergistic effect of polylactic acid (PLA) and Poly (butylene succinate-co-adipate)(PBSA) based sustainable, reactive, super toughened eco-composite blown films for flexible packaging applications. Polym Testing 83:106130

    Article  CAS  Google Scholar 

  2. Palai B, Biswal M, Mohanty S, Nayak SK (2019) In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crops Prod 141:111748

    Article  CAS  Google Scholar 

  3. Qi X, Ren Y, Wang X (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegrad 117:215–223. https://doi.org/10.1016/j.ibiod.2017.01.010

    Article  CAS  Google Scholar 

  4. Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Wiley, Hoboken

    Google Scholar 

  5. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101(22):8493–8501

    Article  Google Scholar 

  6. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  Google Scholar 

  7. Auras RA, Singh SP, Singh JJ (2005) Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18(4):207–216

    Article  CAS  Google Scholar 

  8. Stloukal P, Kucharczyk P (2017) Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive. Polym Degrad Stab 142:217–225. https://doi.org/10.1016/j.polymdegradstab.2017.06.024

    Article  CAS  Google Scholar 

  9. Nampoothiri KM, Nair NR, John RP (2010) Biological degradation of plastics: a comprehensive review. Bioresource Technol 101:8493–8501

    Article  Google Scholar 

  10. Gregorova A, Sedlarik V, Pastorek M, Jachandra H, Stelzer F (2011) Effect of compatibilizing agent on the properties of highly crystalline composites based on poly (lactic acid) and wood flour and/or mica. J Polym Environ 19(2):372

    Article  CAS  Google Scholar 

  11. Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98:2063–2071. https://doi.org/10.1016/j.polymdegradstab.2013.07.004

    Article  CAS  Google Scholar 

  12. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152

    Article  CAS  Google Scholar 

  13. De Andrade MFC, Souza PM, Cavalett O, Morales AR (2016) Life cycle assessment of Poly (Lactic acid)(pla): comparison between chemical recycling, mechanical recycling and composting. J Polym Environ 24(4):372–384

    Article  Google Scholar 

  14. Stloukal P, Verney V, Commereuc S, Rychly J, Matisova-Rychlá L, Pis V, Koutny M (2012) Assessment of the interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering. Chemosphere 88(10):1214–1219

    Article  CAS  Google Scholar 

  15. Stloukal P, Pekařová S, Kalendova A, Mattausch H, Laske S, Holzer C, Chitu L, Bodner S, Maier G, Slouf M, Koutny M (2015) Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manage 42:31–40

    Article  CAS  Google Scholar 

  16. Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polym Degrad Stab 137:122–130

    Article  CAS  Google Scholar 

  17. Agarwal M, Koelling KW, Chalmers JJ (1998) Characterization of the degradation of polylactic acid polymer in a solid substrate environment. Biotechnol Prog 14:517–526. https://doi.org/10.1021/bp980015p

    Article  CAS  PubMed  Google Scholar 

  18. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031

    Article  CAS  Google Scholar 

  19. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions. Polym Testing 32(5):918–926

    Article  CAS  Google Scholar 

  20. Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2003) Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79:405–411. https://doi.org/10.1016/S0141-3910(02)00356-7

    Article  CAS  Google Scholar 

  21. Souza PMS, Coelho FM, Sommaggio LRD, Marin-Morales MA, Morales AR (2019) Disintegration and biodegradation in soil of pbat mulch films: influence of the stabilization systems based on carbon black/hindered amine light stabilizer and carbon black/vitamin E. J Polym Environ 27(7):1584–1594

    Article  CAS  Google Scholar 

  22. Copinet A, Copinet-Legin E, Fricoteaux F, Erre D (2011) Degradation in an inert solid medium of poly (lactic acid) polymeric material by Kibdelosporangium aridum. J Polym Environ 19(1):172–176

    Article  CAS  Google Scholar 

  23. Tisserat B, Finkenstadt VL (2011) Degradation of poly (l-lactic acid) and bio-composites by alkaline medium under various temperatures. J Polym Environ 19(3):766–775

    Article  CAS  Google Scholar 

  24. Balart JF, Montanes N, Fombuena V, Boronat T, Sánchez-Nacher L (2018) Disintegration in compost conditions and water uptake of green composites from poly (lactic acid) and hazelnut shell flour. J Polym Environ 26(2):701–715

    Article  CAS  Google Scholar 

  25. Satti SM, Shah AA, Marsh TL, Auras R (2018) Biodegradation of poly (lactic acid) in soil microcosms at ambient temperature: evaluation of natural attenuation, bio-augmentation and bio-stimulation. J Polym Environ 26(9):3848–3857

    Article  CAS  Google Scholar 

  26. Morro A, Catalina F, Sanchez-León E, Abrusci C (2019) Photodegradation and biodegradation under thermophile conditions of mulching films based on poly (butylene adipate-co-terephthalate) and its blend with poly (lactic acid). J Polym Environ 27(2):352–363

    Article  CAS  Google Scholar 

  27. Tai NL, Adhikari R, Shanks R, Adhikari B (2019) Aerobic biodegradation of starch–polyurethane flexible films under soil burial condition: changes in physical structure and chemical composition. Int Biodeterior Biodegrad 145:104793

    Article  CAS  Google Scholar 

  28. Singh R, Kundu D (2010) Physico-chemical and hydraulic characteristics of soils of major sub-groups of eastern India. J Indian Soc Soil Sci 58:267–278

    Google Scholar 

  29. Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer (Guildf) 40:6777–6788. https://doi.org/10.1016/S0032-3861(99)00014

    Article  CAS  Google Scholar 

  30. Kangwanwatthanasiri P, Suppakarn N, Ruksakulpiwat C, Ruksakulpiwat Y (2015) Glycidyl methacrylate grafted polylactic acid: morphological properties and crystallization behavior. Macromol Symp 354(1):237–243

    Article  CAS  Google Scholar 

  31. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Testing 43:27–37

    Article  CAS  Google Scholar 

  32. Ren M, Song J, Song C, Zhang H, Sun X, Chen Q, Zhang H, Mo Z (2005) Crystallization kinetics and morphology of poly (butylene succinate-co-adipate). J Polym Sci Part B 43(22):3231–3241

    Article  CAS  Google Scholar 

  33. Babu Valapa R, Pugazhenthi G, Katiyar V (2016) Hydrolytic degradation behaviour of sucrose palmitate reinforced poly (lactic acid) nanocomposites. Int J Biol Macromol 89:70–80

    Article  Google Scholar 

  34. Rogovina SZ, Aleksanyan KV, Loginova AA, Ivanushkina NE, Vladimirov LV, Prut EV, Berlin AA (2018) Influence of PEG on mechanical properties and biodegradability of composites based on PLA and starch. Starch/Staerke. https://doi.org/10.1002/star.201700268

    Article  Google Scholar 

  35. Bureepukdee C, Suttiruengwong S, Seadan M (2015) A study on reactive blending of (poly lactic acid) and poly (butylene succinate co adipate). IOP Publishing, Bristol

    Book  Google Scholar 

  36. Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524

    Article  Google Scholar 

  37. Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Müller CMO (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92:19–22. https://doi.org/10.1016/j.carbpol.2012.09.038

    Article  CAS  PubMed  Google Scholar 

  38. Lai JC, Rahman WAWA, Averous L, Lim TH (2016) Study and characterisation of the post processing ageing of sago pith waste biocomposites. Sains Malaysiana 45(4):633–641

    CAS  Google Scholar 

  39. Mendes JF, Paschoalin RT, Carmona VB, Sena Neto AR, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458. https://doi.org/10.1016/j.carbpol.2015.10.093

    Article  CAS  PubMed  Google Scholar 

  40. Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  41. Moreno DDP, Hirayama D, Saron C (2018) Accelerated aging of pine wood waste/recycled LDPE composite. Polym Degrad Stab 149:39–44. https://doi.org/10.1016/j.polymdegradstab.2018.01.014

    Article  CAS  Google Scholar 

  42. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64(12):5008–5011

    Article  CAS  Google Scholar 

  43. Wilfred O, Tai H, Marriott R, Liu Q, Tverezovskiy V, Curling S, Tai H, Fan Z, Wang W (2018) Biodegradation of polylactic acid and starch composites in compost and soil. Int J Nano Res 1:01–11

    Google Scholar 

  44. Grayson ACR, Cima MJ, Langer R (2005) Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 26:2137–2145. https://doi.org/10.1016/j.biomaterials.2004.06.033

    Article  CAS  PubMed  Google Scholar 

  45. Puchalski M, Szparaga G, Biela T, Gutowska A, Sztajnowski S, Krucińska I (2018) Molecular and supramolecular changes in polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers (Basel) 10:1–12. https://doi.org/10.3390/polym10030251

    Article  CAS  Google Scholar 

  46. Salomez M, George M, Fabre P, Touchaleaume F, Cesar G, Lajarrige A, Gastaldi E (2019) A comparative study of degradation mechanisms of PBSA and PHBV under laboratory-scale composting conditions. Polym Degrad Stab 167:102–113. https://doi.org/10.1016/j.polymdegradstab.2019.06.025

    Article  CAS  Google Scholar 

  47. Malwela T, Ray SS (2015) Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites. Int J Biol Macromol 77:131–142

    Article  CAS  Google Scholar 

  48. Feng Zuo Y, Gu J, Qiao Z, Tan H, Cao J, Zhang Y (2015) Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. Int J Biol Macromol 72:391–402

    Article  Google Scholar 

  49. Jandas PJ, Mohanty S, Nayak SK (2013) Sustainability, compostability, and specific microbial activity on agricultural mulch films prepared from poly(lactic acid). Ind Eng Chem Res 52:17714–17724. https://doi.org/10.1021/ie4023429

    Article  CAS  Google Scholar 

  50. Way C, Dean K, Wu DY, Palombo E (2012) Biodegradation of sequentially surface treated lignocellulose reinforced polylactic acid composites: Carbon dioxide evolution and morphology. Polym Degrad Stab 97:430–438. https://doi.org/10.1016/j.polymdegradstab.2011.11.013

    Article  CAS  Google Scholar 

  51. Šerá J, Stloukal P, Jančová P, Verney V, Pekařová S, Koutný M (2016) Accelerated biodegradation of agriculture film based on aromatic-aliphatic copolyester in soil under mesophilic conditions. J Agric Food Chem 64:5653–5661. https://doi.org/10.1021/acs.jafc.6b01786

    Article  CAS  PubMed  Google Scholar 

  52. Maharana T, Mohanty B, Negi YS (2009) Melt-solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34:99–124. https://doi.org/10.1016/j.progpolymsci.2008.10.001

    Article  CAS  Google Scholar 

  53. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Microstructure analysis of polylactic acid-based composites during degradation in soil. Int Biodeterior Biodegrad 122:53–60

    Article  CAS  Google Scholar 

  54. Araújo A, Oliveira M, Oliveira R, Botelho G, Machado AV (2014) Biodegradation assessment of PLA and its nanocomposites. Environ Sci Pollut Res 21:9477–9486. https://doi.org/10.1007/s11356-013-2256-y

    Article  CAS  Google Scholar 

  55. Rudnik E, Briassoulis D (2011) Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J Polym Environ 19:18–39. https://doi.org/10.1007/s10924-010-0243-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwabhusana Palai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palai, B., Mohanty, S. & Nayak, S.K. A Comparison on Biodegradation Behaviour of Polylactic Acid (PLA) Based Blown Films by Incorporating Thermoplasticized Starch (TPS) and Poly (Butylene Succinate-co-Adipate) (PBSA) Biopolymer in Soil. J Polym Environ 29, 2772–2788 (2021). https://doi.org/10.1007/s10924-021-02055-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02055-z

Keywords

Navigation