Skip to main content

Advertisement

Log in

Characterization of Ecofriendly Poly (Vinyl Alcohol) and Green Banana Peel Filler (GBPF) Reinforced Bio-Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

With an intention to replace the synthetic non-biodegradable films in packaging applications, the polyvinyl alcohol (PVA) blended with green banana peel filler (GBPF), the biodegradable films were prepared by solution casting method with varying the concentrations of GBPF (5–25 wt%) in PVA matrix. The bio films were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermo gravimetric analysis, transmissibility, FESEM, tensile test, film solubility and water absorption, water vapour transmission (WVT), soil burial test. Based on results obtained, the changes evidenced in the FTIR spectrum of this PVA/GBPF biofilms suggest that strong hydrogen bonding is taking place due to interfacial exchanges of GBPF in PVA matrix. The XRD results showed that crystallinity of bio films are greater than PVA. Thermo gravimetric analyses predicted that PVA/GBPF bio films are thermally stable up to 300 °C. The light is 45% for transmittance in the visible light region for the PVA/GBPF (25 wt%) bio film. The FESEM micrographs of biofilms palpable that formation of good physical interaction and compatibility between polymer matrix and GBPF up to 20 wt% of GBPF in PVA Matrix. FESEM results also confirmed that higher loading of GBPF (25 wt%) in PVA matrix, observed voids and agglomerations in film surface. The PVA/GBPF bio films with 20% of GBPF gave the highest tensile strength and young’s modulus 44.5 MPa and 66.7 GPA respectively compared to other samples. The elongation at break decreases with increases the GBPF in PVA Matrix up to 20 wt%.The slight decrease in mechanical properties perceived due to higher loading of GBPF (25 wt%) with PVA matrix. The solubility, water absorption and WVT of the PVA/GBPF bio films increased upon increasing the GBPF content. The biodegradation test results discovered that he highest weight loss at 42.3% (25 wt% of GBPF) probably due to the hydrophilic nature of GBPF in PVA matrix. On the whole, the present investigation confirmed that the PVA/GBPF bio films potential for possible utilization in active packaging applications attributable to its better mechanical, thermal, optical, water absorption and biodegradation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sadanand V, Rajini N, Rajulu AV, Satyanarayana B (2016) Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohyd Polym 150:32–39

    Article  CAS  Google Scholar 

  2. Tian H, Wang K, Liu D, Yan J, Xiang A, Rajulu AV (2017) Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. Int J Biol Macromol 101:314–320

    Article  CAS  PubMed  Google Scholar 

  3. Basu A, Kundu S, Sana S, Halder A, Abdullah MF, Datta S, Mukherjee A (2017) Edible nano-bio-composite film cargo device for food packaging applications. Food Packag Shelf Life 11:98–105

    Article  Google Scholar 

  4. Khan A, Khan AAP, Asiri AM, Gupta V, Rathore M (2016) Preparation, properties and applications of organic–inorganic hybrid nanocomposite poly (aniline-co-o-toluidine) tungstomolybdate. J Mol Liq 216:646–653

    Article  CAS  Google Scholar 

  5. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23(4):383–395

    Article  Google Scholar 

  6. Neto JSS, Lima RAA, Cavalcanti DKK, Souza JPB, Aguiar RAA, Banea MD (2019) Effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites. J Appl Polym Sci 136(10):47154

    Article  CAS  Google Scholar 

  7. Cano AI, Cháfer M, Chiralt A, González-Martínez C (2015) Physical and microstructural properties of biodegradable films based on pea starch and PVA. J Food Eng 167:59–64

    Article  CAS  Google Scholar 

  8. Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B 93:226–234

    Article  CAS  Google Scholar 

  9. Zhang Y, Yu C, Chu PK, Lv F, Zhang C, Ji J, Wang H (2012) Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites. Mater Chem Phys 133(2–3):845–849

    Article  CAS  Google Scholar 

  10. Khan A, Rangappa SM, Jawaid M, Siengchin S, Asiri AM (eds) (2020) Hybrid fiber composites: materials, manufacturing, process engineering. Wiley, Hoboken

    Google Scholar 

  11. Vehapi M, Yilmaz A, Özçimen D (2020) Fabrication of oregano-olive oil loaded PVA/chitosan nanoparticles via electrospraying method. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1774463

    Article  Google Scholar 

  12. Nayak S, Khuntia SK, Mohanty SD, Mohapatra J (2020) Investigation and fabrication of thermo-mechanical properties of Ceiba Pentandra bark fiber/poly (vinyl) alcohol composites for automobile dash board and door panel applications. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1745124

    Article  Google Scholar 

  13. SenthilMuthu Kumar T, Rajini N, Jawaid M, VaradaRajulu A, WinowlinJappes JT (2018) Preparation and properties of cellulose/tamarind nut powder green composites: (green composite using agricultural waste reinforcement). J Nat Fibers 15(1):11–20

    Article  CAS  Google Scholar 

  14. Xia G, Reddy KO, Maheswari CU, Jayaramudu J, Zhang J, Zhang J, Rajulu AV (2015) Preparation and properties of biodegradable spent tea leaf powder/poly (propylene carbonate) composite films. Int J Polym Anal Charact 20(4):377–387

    Article  CAS  Google Scholar 

  15. Rathinavel S, Saravanakumar SS (2020) Development and analysis of poly vinyl alcohol/orange peel powder biocomposite films. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1711285

    Article  Google Scholar 

  16. Balavairavan B, Saravanakumar SS, Manikandan KM (2020) Physicochemical and structural properties of green bio films from poly (vinyl alcohol)/nano coconut shell filler. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1723778

    Article  Google Scholar 

  17. Manikandan KM, Yelilarasi A, Senthamaraikannan P, Saravanakumar SS, Khan A, Asiri AM (2019) A green-nanocomposite film based on poly (vinyl alcohol)/Eleusinecoracana: structural, thermal, and morphological properties. Int J Polym Anal Charact 24(3):257–265

    Article  CAS  Google Scholar 

  18. Eltayeb NE, Khan A (2020) Preparation and properties of newly synthesized polyaniline@ graphene oxide/Ag nanocomposite for highly selective sensor application. J Mater Res Technol 9(5):10459–10467

    Article  CAS  Google Scholar 

  19. Vu HT, Scarlett CJ, Vuong QV (2017) Effects of drying conditions on physicochemical and antioxidant properties of banana (Musa cavendish) peels. Drying Technol 35(9):1141–1151

    Article  CAS  Google Scholar 

  20. Astuti P, Erprihana AA (2014) Antimicrobial edible film from banana peels as food packaging. Am J Oil Chem Technol 2(2):66–70

    Google Scholar 

  21. González-Montelongo R, Lobo MG, González M (2010) Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chem 119(3):1030–1039

    Article  CAS  Google Scholar 

  22. Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201

    Article  CAS  Google Scholar 

  23. Rattanavichai W, Cheng W, Chang CC (2017) Simplified processing method of banana (Musa acuminata) peels possess the improvement in immunological responses of Macrobrachium rosenbergii. Aquac Res 48(10):5202–5213

    Article  CAS  Google Scholar 

  24. Xue M, Lu W, Chen C, Tan Y, Li B, Zhang C (2019) Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries. Mater Res Bull 112:269–280

    Article  CAS  Google Scholar 

  25. Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 103(2):590–600

    Article  CAS  Google Scholar 

  26. Kong FB, He QL, Peng W, Nie SB, Dong X, Yang JN (2020) Eco-friendly flame retardant poly (lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property. J Polym Res 27(8):1–12

    Article  CAS  Google Scholar 

  27. Khawas P, Das AJ, Deka SC (2016) Production of renewable cellulose nanopaper from culinary banana (Musa ABB) peel and its characterization. Ind Crops Prod 86:102–112

    Article  CAS  Google Scholar 

  28. Hassan MM (2018) Enhanced antimicrobial activity and reduced water absorption of chitosan films graft copolymerized with poly (acryloyloxy) ethyltrimethylammonium chloride. Int J Biol Macromol 118:1685–1695

    Article  CAS  PubMed  Google Scholar 

  29. Aguirre A, Borneo R, León AE (2011) Properties of triticale flour protein based films. LWT-Food Sci Technol 44(9):1853–1858

    Article  CAS  Google Scholar 

  30. Laxmeshwar SS, Madhu Kumar DJ, Viveka S, Nagaraja GK (2012) Preparation and properties of biodegradable film composites using modified cellulose fibre-reinforced with PVA. ISRN Polym Sci. https://doi.org/10.5402/2012/154314

    Article  Google Scholar 

  31. Kamel NA, Abd El-messieh SL, Saleh NM (2017) Chitosan/banana peel powder nanocomposites for wound dressing application: preparation and characterization. Mater Sci Eng C 72:543–550

    Article  CAS  Google Scholar 

  32. Suki FM, Ismail H, Hamid ZA (2014) Preparation and properties of polyvinyl alcohol/banana frond flour biodegradable film. Prog Rubber Plast Recycl Technol 30(2):103–114

    Article  Google Scholar 

  33. Zhong OX, Ismail H, Abdul Aziz NA, Abu Bakar A (2011) Preparation and properties of biodegradable polymer film based on polyvinyl alcohol and tropical fruit waste flour. Polym Plast Technol Eng 50(7):705–711

    Article  CAS  Google Scholar 

  34. Wang H, Fang P, Chen Z, Wang S (2007) Synthesis and characterization of CdS/PVA nanocomposite films. Appl Surf Sci 253(20):8495–8499

    Article  CAS  Google Scholar 

  35. Tahir MH, Zhao Z, Ren J, Rasool T, Naqvi SR (2019) Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenerg 122:193–201

    Article  CAS  Google Scholar 

  36. Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92(6):1061–1071

    Article  CAS  Google Scholar 

  37. Vu HT, Scarlett CJ, Vuong QV (2018) Phenolic compounds within banana peel and their potential uses: a review. J Funct Foods 40:238–248

    Article  CAS  Google Scholar 

  38. Silva VDM, Macedo MCC, Rodrigues CG, dos Santos AN, Loyola ACDF, Fante CA (2020) Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci 38:100750

    Article  CAS  Google Scholar 

  39. Pelissari FM, Andrade-Mahecha MM, Amaral Sobral PJ, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll 30(2):681–690

    Article  CAS  Google Scholar 

  40. Vorobyeva OV, Andrusenko SF, Volosova EV, Avanesyan SS, Ivanova AM, Kadanova AA (2011) Modification of natural polymers for synthesis of biodegradable materials. Chem Sustain Dev 19(2):131–134

    Google Scholar 

  41. El Bourakadi K, Merghoub N, Fardioui M, Mekhzoum MEM, Kadmiri IM, Essassi EM, Bouhfid R (2019) Chitosan/polyvinyl alcohol/thiabendazoluim-montmorillonite bio-nanocomposite films: mechanical, morphological and antimicrobial properties. Compos B 172:103–110

    Article  CAS  Google Scholar 

  42. Rajini N, Alavudeen A, Siengchin S, Rajulu V, Ayrilmis N (2019) Development and analysis of completely biodegradable cellulose/banana peel powder composite films. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1612811

    Article  Google Scholar 

  43. Guo G, Xiang A, Tian H (2018) Thermal and mechanical properties of eco-friendly poly (vinyl alcohol) films with surface treated bagasse fibers. J Polym Environ 26(9):3949–3956

    Article  CAS  Google Scholar 

  44. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602

    Article  CAS  Google Scholar 

  45. Asad M, Saba N, Asiri AM, Jawaid M, Indarti E, Wanrosli WD (2018) Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (Vinyl alcohol) by casting method. Carbohyd Polym 191:103–111

    Article  CAS  Google Scholar 

  46. Orsuwan A, Sothornvit R (2015) Effect of miniemulsion cross-linking and ultrasonication on properties of banana starch. Int J Food Sci Technol 50(2):298–304

    Article  CAS  Google Scholar 

  47. Ismail H, Zaaba NF (2011) Effect of additives on properties of polyvinyl alcohol (PVA)/tapioca starch biodegradable films. Polym Plast Technol Eng 50(12):1214–1219

    Article  CAS  Google Scholar 

  48. Chen L, Imam SH, Gordon SH, Greene RV (1997) Starch-polyvinyl alcohol crosslinked film—performance and biodegradation. J Environ Polym Degrad 5(2):111–117

    Article  CAS  Google Scholar 

  49. Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int J Food Sci Technol 29(1):39–50

    Article  CAS  Google Scholar 

  50. Guimarães M, Vagner RB, Kátia MN, Fábio GT, Gustavo HDT (2015) High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. J Polym Res 22(10):192

    Article  CAS  Google Scholar 

  51. Guohua Z, Ya L, Cuilan F, Min Z, Caiqiong Z, Zongdao C (2006) Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly (vinyl alcohol) blend film. Polym Degrad Stab 91(4):703–711

    Article  CAS  Google Scholar 

  52. Campos AD, Marconato JC, Martins-Franchetti SM (2011) Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate. Braz Arch Biol Technol 54(6):1367–1378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Balavairavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balavairavan, B., Saravanakumar, S.S. Characterization of Ecofriendly Poly (Vinyl Alcohol) and Green Banana Peel Filler (GBPF) Reinforced Bio-Films. J Polym Environ 29, 2756–2771 (2021). https://doi.org/10.1007/s10924-021-02056-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02056-y

Keywords

Navigation