Skip to main content
Log in

Discrete finite-time robust fault-tolerant high-order sliding mode control of uncertain quadruped robot: an experimental assessment

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

This study addresses a novel discrete finite-time fault compensation method for a quadruped robot leg when the parameter uncertainties and the actuator faults affect the robot dynamics. The occurrence times, shapes, and pattern of the faults are completely unknown. The actuator faults and dynamic uncertainties are reconstructed precisely in finite-time based on discrete-time super twisting estimator. The lumped fault estimator has simple structure. Defining a hybrid high-order sliding surface, a constructive fault-tolerant tracking controller is achieved. The proposed controllers guarantee robustness against uncertainties associated with the robotic manipulator and all type of actuator faults. It is guaranteed that all signals in the closed-loop system are finite-time stable. Finally, experiments are performed on one leg of a quadruped robot to evaluate the effectiveness and feasibility of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azizi, A., Nourisola, H., Maidabad, S.S.: Fault-tolerant control of wind turbines with an adaptive output feedback sliding mode controller. Renew. Energy 135, 55–65 (2019)

    Article  Google Scholar 

  • Blanke, M., Kinnaert, M., Lunze, M.J., Staroswiecki, M.: Diagnosis and fault-tolerant control. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Calisti, M., Corucci, F., Arienti, A., Laschi, C.: Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Bioinspiration Biomim. 10, 046012 (2015)

    Article  Google Scholar 

  • Cambera, J.C., Batlle, V.F.: Input-state feedback linearization control of a single-link flexible robot arm moving under gravity and joint friction. Robot. Auton. Syst. 88, 24–36 (2017)

    Article  Google Scholar 

  • Corradini, M.L., Fossi, V., Giantomassi, A., Ippoliti, G., Longhi, S., Orlando, G.: Discrete time sliding mode control of robotic manipulators: development and experimental validation. Control Eng. Pract. 20, 816–822 (2012)

    Article  Google Scholar 

  • Farid, Y., Bigdeli, N.: Robust adaptive intelligent sliding model control for a class of uncertain chaotic systems with unknown time-delay. Nonlinear Dyn. 67, 2225–2240 (2012). https://doi.org/10.1007/s11071-011-0141-0

    Article  MathSciNet  MATH  Google Scholar 

  • Farid, Y., Bigdeli, N.: Inverse optimality in the class of Hopfield neural networks with input nonlinearity. Neural Comput. Appl. 22, 711–717 (2013). https://doi.org/10.1007/s00521-011-0756-6

    Article  Google Scholar 

  • Farid, Y., Ehsani-Seresht, A.: Robust adaptive fractional-order backstepping sliding mode control of uncertain continuum robot. In: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, pp. 394–399. (2018). https://doi.org/10.1109/ICRoM.2018.8657491

  • Farid, Y., Moghaddam, T.V.: Generalized projective synchronization of chaotic satellites problem using linear matrix inequality. Int. J. Dyn. Control 2, 577–586 (2014). https://doi.org/10.1007/s40435-014-0089-2

    Article  Google Scholar 

  • Farid, Y., Ramezani, A.: A wavelet-based robust adaptive T-S fuzzy controller design for synchronization of faulty chaotic gyrostat systems. J. Control Autom. Electr. Syst. (2020). https://doi.org/10.1007/s40313-020-00647-z

    Article  Google Scholar 

  • Farid, Y., Bigdeli, N., Afshar, K.: Anti-synchronization of chaotic neural networks with time varying delays via linear matrix inequality. Int. J. Phys. Sci. 7(2), 273–280 (2012)

    Google Scholar 

  • Farid, Y., Majd, V.J., Ehsani-Seresht, A., Prescribed performance control of quadruped robot. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), Tehran, pp. 374–379. (2016). https://doi.org/10.1109/ICRoM.2016.7886767

  • Farid, Y., Majd, V.J., Ehsani-Seresht, A.: Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mech. Syst. Signal Process. 104, 465–486 (2018a). https://doi.org/10.1016/j.ymssp.2017.11.010

    Article  Google Scholar 

  • Farid, Y., Johari-Majd, V., Ehsani-Seresht, A.: Observer-based robust adaptive force-position controller design for quadruped robots with actuator faults. Int. J. Adapt. Control Signal Process. pp. 1–20. (2018b). https://doi.org/10.1002/acs.2923

  • Farid, Y., Majd, V.J., Ehsani-Seresht, A.: Dynamic-free robust adaptive intelligent fault-tolerant controller design with prescribed performance for stable motion of quadruped robots. Adapt. Behav. (2019). https://doi.org/10.1177/1059712319890692

    Article  Google Scholar 

  • Gang, C., Bo, J., Ying, C.: Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation. Mechatronics 50, 1–15 (2018)

    Article  Google Scholar 

  • Gou, B., Ge, X.L., Liu, Y.C., Feng, X.Y.: Load-current-based sensor fault diagnosis and tolerant control scheme for traction inverters. Electron. Lett. 52(20), 1717–1719 (2016)

    Article  Google Scholar 

  • Han, S.Y., Chen, Y.H., Tang, G.Y.: Fault diagnosis and fault-tolerant tracking control for discrete-time systems with faults and delays in actuator and measurement. J. Frankl. Inst. 354, 4719–4738 (2017)

    Article  MathSciNet  Google Scholar 

  • Hashemi, M.: Adaptive neural dynamic surface control of MIMO nonlinear time delay systems with time-varying actuator failures. Int. J. Adapt. Control Signal Process. 31, 275–296 (2017)

    Article  MathSciNet  Google Scholar 

  • Hernandez-Alcantara, D., Amezquita-Brooks, L., Morales-Menendez, R., Sename, O., Dugard, L.: The cross-coupling of lateral-longitudinal vehicle dynamics: towards decentralized fault-tolerant control schemes. Mechatronics 50, 377–393 (2018)

    Article  Google Scholar 

  • Hu, Q., Xu, L., Zhang, A.: Adaptive back-stepping trajectory tracking control of robot manipulator. J. Frankl. Inst. 349(3), 1087–1105 (2012)

    Article  Google Scholar 

  • Hu, Q., Zhang, X., Niu, G.: Observer-based fault-tolerant control and experimental verification for rigid spacecraft. Aerosp. Sci. Technol. (2019). https://doi.org/10.1016/j.ast.2019.06.013

    Article  Google Scholar 

  • Li, H., Gao, H., Shi, P., Zhao, X.: Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)

    Article  MathSciNet  Google Scholar 

  • Liang, W., Huang, S., Chen, S., Tan, K.K.: Force estimation and failure detection based on disturbance observer for an ear surgical device. ISA Trans. 66, 476–484 (2017)

    Article  Google Scholar 

  • Majd, ​V.J., Simaan, M.A., A continuous friction model for servo systems with stiction. In: The 4th IEEE Conference on Control Applications, Albany, NY, pp. 296–301 (1995)

  • Mihoub, M., Nouri, A.S., Abdennour, R.B.: Real-time application of discrete second order sliding mode control to a chemical reactor. Control Eng. Pract. 17, 1089–1095 (2009)

    Article  Google Scholar 

  • Mousavi, ​S.M., Majd, V.J.: Robust filtering of extended stochastic genetic regulatory networks with parameter uncertainties, disturbances, and time-varying delays. Neurocomputing 74, 2123–2134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)

    Article  MathSciNet  Google Scholar 

  • Noura, H., Theilliol, D.: Fault-tolerant control systems: design and practical applications. Springer, Berlin (2009)

    Book  Google Scholar 

  • Pan, Y., Li, X., Wang, H., Yu, H.: Continuous sliding mode control of compliant robot arms: a singularly perturbed approach. Mechatronics 52, 127–134 (2018)

    Article  Google Scholar 

  • Sharma, R., Gaur, P., Mittal, A.P.: Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 58, 279–291 (2015)

    Article  Google Scholar 

  • Veselí, B., Draženović, B.P., Milosavljevic, C.: Improved discrete-time sliding-mode position control using Euler velocity estimation. IEEE Trans. Ind. Electron. 57(11), 3840–3847 (2010)

    Article  Google Scholar 

  • Yan, M., Shi, Y.: Robust discrete-time sliding mode control for uncertain systems with time-varying state delay. IET Control Theory Appl. 2, 662–674 (2008)

    Article  MathSciNet  Google Scholar 

  • Yang, R., Yang, C., Chen, M., Annamalai, A.S.K.: Discrete-time optimal adaptive RBFNN control for robot manipulators with uncertain dynamics. Neurocomputing 234, 107–115 (2017)

    Article  Google Scholar 

  • Zakeri, E., Moeinkhah, H.: Digital control design for an IPMC actuator using adaptive optimal proportional integral plus method: simulation and experimental study. Sens. Actuat. A 298, 111577 (2019)

    Article  Google Scholar 

  • Zakeri, E., Moezi, S.A., Eghtesad, M.: Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems. ISA Trans. 85, 13–32 (2019)

    Article  Google Scholar 

  • Zeghlache, S., Djerioui, A., Benyettou, L., Benslimane, T., Mekki, H., Bouguerra, A.: Fault tolerant control for modified quadrotor via adaptive type-2 fuzzy backstepping subject to actuator faults. ISA Trans. (2019). https://doi.org/10.1016/j.isatra.2019.04.034

    Article  Google Scholar 

  • Zhao, J., Jiang, B., Chowdhury, F.N., Shi, P.: Active fault-tolerant control for near space vehicles based on reference model adaptive sliding mode scheme. Int. J. Adapt. Control Signal Process. 28, 765–777 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Farid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: details of leg dynamics

Appendix: details of leg dynamics

The structure and details of matrixes \(M\), \(C\), and \(G\) presented in Sect. 2 are as:

$$M(q)=\left[\begin{array}{ccc}{M}_{11}& {M}_{12}& {M}_{13}\\ {M}_{21}& {M}_{22}& {M}_{23}\\ {M}_{31}& {M}_{32}& {M}_{33}\end{array}\right], \, C(q,\dot{q})=\left[\begin{array}{ccc}{C}_{11}& {C}_{12}& {C}_{13}\\ {C}_{21}& {C}_{22}& {C}_{23}\\ {C}_{31}& {C}_{32}& 0\end{array}\right], \, G(q)=\left[\begin{array}{l}{G}_{1}\\ {G}_{2}\\ {G}_{3}\end{array}\right]$$

where:\({M}_{11}=\left({m}_{2}+{m}_{3}\right){d}^{2}+\left({m}_{2}/4+{m}_{3}\right){L}_{2}^{2}\mathrm{cos}\left({q}_{2}^{2}\right)+{m}_{2}{d}^{2}\mathrm{sin}\left({q}_{2}^{2}\right)-{m}_{2}d{L}_{2}\mathrm{sin}\left(2{q}_{2}\right)/2+{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}/4+{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right)+{n}_{r1}^{2}{I}_{m}\), \({M}_{12}=d\left({m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)+{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{2}\right)\right)+2{m}_{3}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2d{m}_{3}\mathrm{cos}\left({q}_{2}\right)/2\), \({M}_{13}=d{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)/2\), \({M}_{21}={M}_{12}\), \({M}_{22}={m}_{2}{L}_{2}^{2}/4+{m}_{3}({L}_{2}^{2}+{L}_{3}^{2}/4)+{m}_{2}{d}^{2}+{m}_{3}{L}_{2}{L}_{3}\mathrm{cos}\left({q}_{3}\right)++{n}_{r2}^{2}{I}_{m}\), \({M}_{23}={m}_{3}{L}_{3}\left({L}_{3}+2{L}_{2}\mathrm{cos}\left({q}_{3}\right)\right)/4+{n}_{r3}^{2}{I}_{m}/2\), \({M}_{31}={M}_{13}\), \({M}_{32}={M}_{23}\), \({M}_{33}={m}_{3}{L}_{3}^{2}/4+{n}_{r3}^{2}{I}_{m}\),\({C}_{11}={m}_{2}d\left(d\mathrm{sin}\left(2{q}_{2}\right)-{L}_{2}\mathrm{cos}\left(2{q}_{2}\right)\right){\dot{q}}_{2}/2-{m}_{3}{L}_{3}^{2}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)({\dot{q}}_{2}+{\dot{q}}_{3})/8-({m}_{2}+4{m}_{3}){L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right){\dot{q}}_{2}/8-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{3}/4-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)(2{\dot{q}}_{2}+{\dot{q}}_{3})/4\),\({C}_{12}={m}_{2}\left(\mathrm{sin}\left(2{q}_{2}\right)\left({d}^{2}-{L}_{2}^{2}/4\right)-d{L}_{2}\mathrm{cos}\left(2{q}_{2}\right)\right){\dot{q}}_{1}/2-{m}_{3}{L}_{3}\left({L}_{3}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)/8+{L}_{2}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)/2\right){\dot{q}}_{1}-{m}_{3}{L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right){\dot{q}}_{1}/2-d\left(d{m}_{2}\mathrm{sin}\left({q}_{2}\right)-{L}_{2}\mathrm{cos}\left({q}_{2}\right)({m}_{2}/2+{m}_{3})\right){\dot{q}}_{2}+d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)\left({\dot{q}}_{2}+{\dot{q}}_{3}\right)/2\),\({C}_{13}=d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right){\dot{q}}_{2}/2-{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)+{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right){\dot{q}}_{1}/2+d{m}_{3}{L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right){\dot{q}}_{3}/2\), \({C}_{21}={L}_{2}^{2}\mathrm{sin}\left(2{q}_{2}\right)\left({m}_{2}/4+{m}_{3}\right){\dot{q}}_{1}+\left({m}_{3}{L}_{3}^{2}\mathrm{sin}\left(2\left({q}_{2}+{q}_{3}\right)\right)/4-{m}_{2}{d}^{2}\mathrm{sin}\left(2{q}_{2}\right)\right){\dot{q}}_{2}+{L}_{2}\left({m}_{3}{L}_{3}\mathrm{sin}\left(2{q}_{2}+{q}_{3}\right)+d{m}_{2}\mathrm{cos}\left(2{q}_{2}\right)/2\right){\dot{q}}_{3}\), \({C}_{22}=-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{3}/2\), \({C}_{23}=-{m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right)({\dot{q}}_{2}+{\dot{q}}_{3})/2\), \({C}_{31}={m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\left({L}_{3}\mathrm{cos}\left({q}_{2}+{q}_{3}\right)+2{L}_{2}\mathrm{cos}\left({q}_{2}\right)\right){\dot{q}}_{1}/4\), \({C}_{32}={m}_{3}{L}_{2}{L}_{3}\mathrm{sin}\left({q}_{3}\right){\dot{q}}_{2}/2\),\({G}_{1}=g{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{1}\right)\mathrm{cos}\left({q}_{2}\right)/2-d\mathrm{sin}\left({q}_{2}\right)+d\mathrm{cos}\left({q}_{1}\right)+{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{1}\right)\mathrm{cos}\left({q}_{2}+{q}_{3}\right)/2+{L}_{2}\mathrm{cos}\left({q}_{2}\right)+d\mathrm{cos}\left({q}_{1}\right)\), \({G}_{2}=g\mathrm{cos}\left({q}_{1}\right)\left({m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)+{m}_{2}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2{m}_{3}{L}_{2}\mathrm{sin}\left({q}_{2}\right)+2d{m}_{2}\mathrm{cos}\left({q}_{2}\right)\right)/2\), \({G}_{3}=g{m}_{3}{L}_{3}\mathrm{sin}\left({q}_{2}+{q}_{3}\right)\mathrm{cos}\left({q}_{1}\right)/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, Y., Ehsani-Seresht, A. Discrete finite-time robust fault-tolerant high-order sliding mode control of uncertain quadruped robot: an experimental assessment. Int J Intell Robot Appl 5, 23–36 (2021). https://doi.org/10.1007/s41315-020-00161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-020-00161-0

Keywords

Navigation