Skip to main content
Log in

Ricci Flow Approach to the Cosmological Constant Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In order to resolve the cosmological constant problem, the notion of reference frame is re-examined at the quantum level. By using a quantum non-linear sigma model (Q-NLSM), a theory of quantum spacetime reference frame is proposed. The underlying mathematical structure is a new geometry endowed with intrinsic second central moment (variance) or even higher moments of its coordinates, which generalizes the classical Riemannian geometry based on only first moment (mean) of its coordinates. The second central moment of the coordinates directly modifies the quadratic form distance which is the foundation of the Riemannian geometry. At semi-classical level, the second central moment introduces a flow which continuously deforms the Riemannian geometry driven by its classical Ricci curvature, which is known as the Ricci flow. A generalized equivalence principle of quantum version is also proposed to interpret the new geometry endowed with at least second moment. As a consequence, the spacetime is stabilized against quantum fluctuation, and the cosmological constant problem is resolved within the framework. With an isotropic positive curvature initial condition, the long flow time solution of the Ricci flow exists, the accelerating expansion universe at cosmic scale is an observable effect of the spacetime deformation of the normalized Ricci flow. A deceleration parameter − 0.67 consistent with measurement is obtained by using the reduced volume method introduced by Perelman. Effective theory of gravity within the framework is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Perlmutter, S., et al.: (Supernova Cosmology Project), Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

  3. Riess, A.G., et al.: (Supernova Search Team), Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

  4. Ade, P.A.R. et al.: (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589

  5. Bousso, R.: The cosmological constant. General Relativ. Gravit. 40, 607 (2008). arXiv:0708.4231

  6. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  7. Miao, L., Xiao-Dong, L., Shuang, W., Yi, W.: Dark energy. Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  8. Martin, J.: Everything you always wanted to know about the cosmological constant problem (but were afraid to ask. Comptes Rendus Physique 13, 566 (2012). arXiv:1205.3365

  9. Sola, J.: Cosmological constant and vacuum energy: old and new ideas. J. Phys. 453, 012015 (2013)

    Google Scholar 

  10. Polchinski, J.: The cosmological constant and the string landscape. In: The Quantum Structure of Space and Time: Proceedings of the 23rd Solvay Conference on Physics. Brussels, Belgium. 1–3 December 2005, pp. 216–236 (2006). arXiv:hep-th/0603249

  11. Massó, E.: The weight of vacuum fluctuations. Phys. Lett. B 679, 433 (2009). arXiv:0902.4318

  12. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996). arXiv:quant-ph/9609002

  13. Luo, M.J.: The cosmological constant problem and re-interpretation of time. Nucl. Phys. 884, 344 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Luo, M.J.: Dark energy from quantum uncertainty of distant clock. J. High Energy Phys. 2015, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, M.J.: The cosmological constant problem and quantum spacetime reference frame. Int. J. Mod. Phys. D 27, 1850081 (2018). arXiv:1507.08755

  16. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Hamilton, R.S., et al.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237 (1988)

    Article  MathSciNet  Google Scholar 

  19. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv preprint arXiv:math/0211159 (2002)

  20. Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv preprint arXiv:math/0303109 (2003)

  21. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv preprint arXiv:math.DG/0307245 (2003)

  22. Chow, B., Knopf, D.: The Ricci Flow: An Introduction: An Introduction, vol. 1. American Mathematical Society, Providence (2004)

    Book  MATH  Google Scholar 

  23. Topping, P.: Lectures on the Ricci flow, vol. 325. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  24. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, vol. 77. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  25. Morgan, J., Tian, G., Flow, R.: The Poincaré Conjecture Clay Mathematics Monographs. American Mathematical Society, Providence (2007)

    Google Scholar 

  26. Müller, R.: Differential Harnack Inequalities and the Ricci Flow. European Mathematical Society, Zurich (2006)

    Book  MATH  Google Scholar 

  27. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. American Mathematical Society, Providence (2007)

    Book  MATH  Google Scholar 

  28. Gutperle, M., Headrick, M., Minwalla, S., Schomerus, V.: Spacetime energy decreases under world-sheet RG flow. J. High Energy Phys. 2003, 073 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bakas, I.: Geometric flows and (some of) their physical applications. Bulg. J. Phys. 33, 091 (2006). arXiv:hep-th/0511057

  30. Headrick, M., Wiseman, T.: Ricci flow and black holes. Class. Quantum Gravity 23, 6683 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Samuel, J., Chowdhury, S.R.: Geometric flows and black hole entropy. Class. Quantum Gravity 24, F47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Solodukhin, S.N.: Entanglement entropy and the Ricci flow. Phys. Lett. B 646, 268 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Tseytlin, A.A.: Sigma model renormalization group flow, “central charge” action, and Perelman’s entropy. Phys. Rev. D 75, 064024 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Woolgar, E.: Some applications of Ricci flow in physics. Can. J. Phys. 86, 645 (2008)

    Article  ADS  Google Scholar 

  35. Carfora, M.: Renormalization group and the Ricci flow. Milan J. Math. 78, 319 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Headrick, M., Kitchen, S., Wiseman, T.: A new approach to static numerical relativity and its application to Kaluza-Klein black holes. Class. Quantum Gravity 27, 035002 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Figueras, P., Lucietti, J., Wiseman, T.: Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua. Class. Quantum Gravity 28, 215018 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ivancevic, V.G., Ivancevic, T.T.: Ricci flow and nonlinear reaction-diffusion systems in biology, chemistry, and physics. Nonlinear Dyn. 65, 35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Carfora, M., Marzuoli, A.: Smoothing out spatially closed cosmologies. Phys. Rev. Lett. 53, 2445 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  40. Carfora, M., Marzuoli, A.: Model geometries in the space of Riemannian structures and Hamilton’s flow. Class. Quantum Gravity 5, 659 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Carfora, M., Piotrkowska, K.: Renormalization group approach to relativistic cosmology. Phys. Rev. D 52, 4393 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  42. Piotrkowska, K.: Averaging, renormalization group and criticality in cosmology. arXiv preprint arXiv:gr-qc/9508047 (1995)

  43. Carfora, M., Buchert, T.: Ricci flow deformation of cosmological initial data sets. In: Mangana, N., Monaco, R., Rionero, S. (eds.) 14th International Conference on Waves and Stability in Continuous Media, pp. 118–127. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  44. Friedan, D.: Nonlinear models in \(2+\varepsilon\) dimensions. Phys. Rev. Lett. 45, 1057 (1980a)

    Article  ADS  MathSciNet  Google Scholar 

  45. Friedan, D.: Nonlinear models in \(2+ \varepsilon\) dimensions. Ann. Phys. 163, 318 (1980b)

    Article  ADS  MathSciNet  Google Scholar 

  46. Omero, C., Percacci, R.: Generalized non-linear \(\sigma\)-models in curved space and spontaneous compactification. Nucl. Phys. B 165, 351 (1980)

    Article  ADS  Google Scholar 

  47. Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018 (2006). arXiv:hep-th/0512200

  48. Jaffe, R.L.: Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005)

    Article  ADS  Google Scholar 

  49. Gell-Mann, M., Lévy, M.: The axial vector current in beta decay. Il Nuovo Cimento 16, 705 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  51. Ketov, S.V.: Quantum Non-linear Sigma-Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and Strings. Springer, Berlin (2013)

    Google Scholar 

  52. De Rham, C., Tolley, A.J., Zhou, S.Y.: Non-compact nonlinear sigma models. Phys. Lett. B 760, 579 (2015)

    Article  MATH  Google Scholar 

  53. Percacci, R.: Asymptotic safety in gravity and sigma models, arXiv preprint arXiv:0910.4951 (2009)

  54. Codello, A., Percacci, R.: Fixed points of nonlinear sigma models in d\(>\)2. Phys. Lett. B 672, 280 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  55. Wellegehausen, B.H., Körner, D., Wipf, A.: Asymptotic safety on the lattice: the nonlinear O (N) sigma model. Ann. Phys. 349, 374 (2014)

    Article  ADS  MATH  Google Scholar 

  56. Zalaletdinov, R.: The averaging problem in cosmology and macroscopic gravity. Int. J. Mod. Phys. A 23, 1173 (2008). arXiv:0801.3256

  57. Paranjape, A.: The averaging problem in cosmology, PhD thesis, TIFR, Mumbai, Dept. Astron. Astrophys. (2009), arXiv:0906.3165

  58. Guenther, C., Oliynyk, T.A.: Stability of the (two-loop) renormalization group flow for nonlinear sigma models. Lett. Math. Phys. 84, 149 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Gimre, K., Guenther, C., Isenberg, J.: Second-order renormalization group flow of three-dimensional homogeneous geometries. arXiv preprint arXiv:1205.6507 (2012)

  60. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  61. Moreva, E., Brida, G., Gramegna, M., Giovannetti, V., Maccone, L., Genovese, M.: Time from quantum entanglement: an experimental illustration. Phys. Rev. A 89, 052122 (2014). arXiv:1310.4691

  62. Phillips, N.G., Hu, B.: Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation. Phys. Rev. D 62, 084017 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  63. DeTurck, D.M., et al.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18, 157 (1983)

    MathSciNet  MATH  Google Scholar 

  64. Cao, X., Zhang, Q.S.: The conjugate heat equation and Ancient solutions of the Ricci flow. Adv. Math. 228, 2891 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yokota, T.: On the asymptotic reduced volume of the Ricci flow. Ann. Glob. Anal. Geom. 37, 263 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Cao, H.-D., Hamilton, R.S., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons, arXiv preprint arXiv:math/0404165 (2004)

  67. Cao, H.-D.: Recent progress on Ricci solitons, arXiv preprint arXiv:0908.2006 (2009)

  68. Feldman, M., Ilmanen, T., Ni, L.: Entropy and reduced distance for Ricci expanders. J. Geom. Anal. 15, 49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Xu, G.: An equation linking W-entropy with reduced volume, Journal für die reine und angewandte Mathematik (Crelles Journal) 2017, 49 (2017), arXiv:math.DG/1211.6354

  70. Milgrom, M.: MOND theory. Can. J. Phys. 93, 107 (2015). arXiv:1404.7661

  71. Clowe, D., Bradac, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C., Zaritsky, D.: A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006). arXiv:astro-ph/0608407

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China (NSFC) under Grant No. 11205149, and the Scientific Research Foundation of Jiangsu University for Young Scholars under Grant No. 15JDG153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M.J. Ricci Flow Approach to the Cosmological Constant Problem. Found Phys 51, 2 (2021). https://doi.org/10.1007/s10701-021-00405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00405-4

Keywords

Navigation