Skip to main content

Advertisement

Log in

Flow Separation Control of Nacelle in Crosswind by Microsecond Pulsed Surface Dielectric Barrier Discharge Plasma Actuator

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Flow separation under crosswind conditions seriously jeopardizes the quality of the nacelle’s flow field. In this paper, microsecond pulsed surface dielectric barrier discharge (μSDBD) is used to suppress the flow separation and reduce the crosswind distortion of the nacelle. The flow structure induced by the μSDBD is first explored by a high-speed schlieren system. The pressure waves composed of a cylindrical wave surrounding the electrodes and a flat wave at the top of the cylindrical one can be perceived, which indicates the fast gas heating produced by the μSDBD. A set of wind tunnel tests are then conducted to verify the ability of μSDBD to suppress the nacelle flow separation and study the influence laws of pulse frequency, coverage area, and the actuator layout on the flow control effects. Results show that plasma actuation can not only improve the total pressure at the exit of the nacelle but also suppress the flow distortion caused by the crosswind. The best flow control effect can be achieved at the pulse frequency of 500 Hz, with the value of sectional distortion coefficient reduced by 57.76% compared with the baseline condition. The flow control effect with the plasma actuator covering 120° of the nacelle perimeter is better than that of 60° and 180° coverage, showing the highest flow control efficiency in the 120° condition. The μSDBD can improve mixing between the boundary layer and the main flow, enhancing the ability of the boundary layer to resist the adverse pressure gradient, which is beneficial to flow separation control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Benard, N., Zouzou, N., Claverie, A., et al.: Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications. J. Appl. Phys. 111(3), 033303 (2012)

    Article  Google Scholar 

  • Brix, S., Neuwerth, G., Jacob, D.: The inlet-vortex system of jet engines operating near the ground. In: 18th Applied Aerodynamics Conference, vol. 3998 (2000)

  • Colin, Y., Aupoix, B., Boussuge, J.F., et al.: Numerical simulation of the distortion generated by crosswind inlet flows. In: International Symposium on Air Breathing Engines (2007)

  • Corke, T.C., Enloe, C.L., Wilkinson, S.P.: Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42(1), 505–529 (2009)

    Article  Google Scholar 

  • Feng, L.H., Jukes, T.N., Choi, K.S., et al.: Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Exp. Fluids 52(6), 1533–1546 (2012)

    Article  Google Scholar 

  • Goldsmith, E.L., Seddon, J.: Practical intake aerodynamic design. Amer Inst of Aeronautics &. (1993).

  • Greenblatt, D., Kastantin, Y., Nayeri, C.N., et al.: Delta-wing flow control using dielectric barrier discharge actuators. AIAA J. 46(6), 1554–1560 (2008)

    Article  Google Scholar 

  • Gursul, I., Wang, Z., Vardaki, E.: Review of flow control mechanisms of leading-edge vortices. Prog. Aerosp. Sci. 43(7–8), 246–270 (2007)

    Article  Google Scholar 

  • Hall, C.A., Hynes, T.P.: Measurements of intake separation hysteresis in a model fan and nacelle rig. J. Propuls. Power 22(4), 872–879 (2012)

    Article  Google Scholar 

  • Hancock, J.P., Hinson, B.L.: Inlet development the L-500. AIAA 69–488, 1969 (1969)

    Google Scholar 

  • Harrison, N.A., Anderson, J., Fleming, J.L., et al.: Active flow control of a boundary layer-ingesting serpentine inlet diffuser. J. Aircr. 50(1), 262–271 (2013)

    Article  Google Scholar 

  • Huang, J., Corke, T.C., Thomas, F.O.: Plasma actuators for separation control of low-pressure turbine blades. AIAA J. 44(1), 51–57 (2006)

    Article  Google Scholar 

  • Hwang, D., Boldman, D., Hughes, C.: Flow analysis for the nacelle of an advanced ducted propeller at high angle of attack and at cruise with boundary layer control. In: 32nd Aerospace Sciences Meeting and Exhibit (1994)

  • Im, S., Do, H., Cappelli, M.A.: Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow. Appl. Phys. Lett. 97(4), 605 (2010)

    Article  Google Scholar 

  • Jolibois, J., Forte, M., Moreau, É.: Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: optimization of the actuation location along the chord. J. Electrostat. 66(9–10), 496–503 (2008)

    Article  Google Scholar 

  • Joly, R.B., Ogaji, S.O.T., Singh, R., et al.: Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine. Appl. Energy 78(4), 397–418 (2004)

    Article  Google Scholar 

  • Joussot, R., Hong, D., Weber-Rozenbaum, R., et al.: Modification of the laminar-to-turbulent transition on a flat plate using DBD plasma actuator. In: 5th Flow Control Conference. 4708 (2010).

  • Kamran, F.: Viscous flow past a nacelle isolated and in proximity of a flat plate. AIAA J. 2013, 919–927 (2013)

    Google Scholar 

  • Kang, C.H., Hsu, W.C., Lee, E.K., et al.: Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect. Mech. Mach. Theory 46(3), 264–275 (2011)

    Article  Google Scholar 

  • Komuro, A., Takashima, K., Konno, K., et al.: Schlieren visualization of flow-field modification over an airfoil by near-surface gas-density perturbations generated by a nanosecond-pulse-driven plasma actuator. J. Phys. D Appl. Phys. 50(21), 215202-1–11 (2017)

    Article  Google Scholar 

  • Komuro, A., Takashima, K., Tanaka, N., et al.: Multiple control modes of nanosecond-pulse-driven plasma-actuator evaluated by forces, static pressure, and PIV measurements. Exp. Fluids 59(8), 129-1–19 (2018a)

    Article  Google Scholar 

  • Komuro, A., Matsuyuki, S., Ando, A.: Simulation of pulsed positive streamer discharges in air at high temperatures. Plasma Sources Sci. Technol. 27(10), 104005-1–18 (2018b)

    Google Scholar 

  • Li, Y.H., Wu, Y., Song, H.M., et al.: Preliminary experimental investigation of atmosphere plasma flow control technology. J. Air Force Eng. Univ. Nat. Sci. Ed. 3, 1–3 (2006)

    Google Scholar 

  • Little, J., Nishihara, M., Adamovich, I., et al.: High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp. Fluids 48(3), 521–537 (2010)

    Article  Google Scholar 

  • Luis, G.T., Girardi, R.: Evaluation of engine inlet vortices using CFD. AIAA 2012-1200 (2012)

  • Murphy, J.P., Macmanus, D.G.: Ground vortex aerody-namics under crosswind conditions. Exp. Fluids 50(1), 109–124 (2011)

    Article  Google Scholar 

  • Nicolas, B., Nourredine, Z., Alain, C., Julien, S., Eric, M.: Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications. J. Appl. Phys. 111, 033303 (2012)

    Article  Google Scholar 

  • Porter, C., McLaughlin, T., Enloe, C., et al.: Boundary layer control using a DBD plasma actuator. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, vol. 786 (2007)

  • Qiang, X.H., Wang, Z.H., Liu, Z.W., Zhang, X.B., Zhang, J.W.: Design method research of turbofan-engine nacelle. Mach. Des. Manuf. 2013(11), 23–25 (2013)

    Google Scholar 

  • Roupassov, D.V., Nikipelov, A.A., Nudnova, M.M., et al.: Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge. AIAA J. 47(1), 168–185 (2009)

    Article  Google Scholar 

  • Seddon, J., Goldsmith, E.L.: Intake Aerodynamics: An Account of the Mechanics of Flow in and Around the Air Intakes of Turbine-Engined and Ramjet Aircraft and Missiles. Collins Professional and Technical Books, London (1985)

    Google Scholar 

  • Seddon, J., Goldsmith, E.L.: Intake Aerodynamics. Blackwell, Oxford (1999)

    Book  Google Scholar 

  • Starikovskii, A.Y., Nikipelov, A.A., Nudnova, M.M., et al.: SDBD plasma actuator with nanosecond pulse-periodic discharge. Plasma Sources Sci. Technol. 18(3), 034015 (2009)

    Article  Google Scholar 

  • Su, Z., Li, J., Liang, H., et al.: UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge. Chinese Phys. B. 27(10), 105205 (2018)

    Article  Google Scholar 

  • Tomita, J.T., Bringhenti, C., Barbosa, J.R., et al.: Nacelle design for mixed turbofan engines. In: Turbo Expo: Power for Land, Sea, and Air (2006)

  • Tourrette, L.: Navier–Stokes simulations of air-intakes in crosswind using local preconditioning. AIAA J. 2002–2739, 2000 (2002)

    Google Scholar 

  • Trapp, L., Oliveira, G.: Aircraft thrust reverser cascade configuration evaluation through CFD. In: 41st Aerospace Sciences Meeting and Exhibit, vol. 723 (2003)

  • Unfer, T., Boeuf, J.P.: Modeling and comparison of sinusoidal and nanosecond pulsed surface dielectric barrier discharges for flow control. Plasma Phys. Control. Fusion 52(12), 124019 (2010)

    Article  Google Scholar 

  • Van Ness, D.K., Corke, T.C., Morris, S.C.: Plasma actuator blade tip clearance flow control in a linear turbine cascade. J. Propuls. Power 28(3), 504–516 (2012)

    Article  Google Scholar 

  • Vassberg, J., Tinoco, E., Mani, M., et al.: Summary of the third AIAA CFD drag prediction workshop. 45th AIAA Aerospace Sciences Meeting and Exhibit. 260 (2007)

  • Vunnam, K., Hoover, R.: Modeling of inlet distortion using a combined turbofan and nacelle inlet model during crosswind and low speed forward operation. Turbo Expo Power Land Sea Air 54617, 371–380 (2011)

    Google Scholar 

  • Wei, B., Wu, Y., Liang, H., et al.: Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator. Aerosp. Sci. Technol. 96, 105584 (2020)

    Article  Google Scholar 

  • Wellborn, S.R., Okiishi, T.H., Reichert, B.A.: A study of the compressible flow through a diffusing S-duct. In: NASA Technical Memorandum, vol. 106411 (1993)

  • Xie, L.K., Liang, H., Zhao, G., et al.: Characteristics of pulsed surface arc discharge actuator and its verification of flow control over a Delta wing. Sens. Actuators A 297, 111550 (2019)

    Article  Google Scholar 

  • Zhang, H., Wu, Y., Li, Y., et al.: Control of compressor tip leakage flow using plasma actuation. Aerosp. Sci. Technol. 86, 244–255 (2019a)

    Article  Google Scholar 

  • Zhang, C., Huang, B.D., Luo, Z.B., Che, X.K., Yan, P., Shao, T.: Atmospheric-pressure pulsed plasma actuators for flow control: shock wave and vortex characteristics. Plasma Sources Sci. Technol. 28, 064001 (2019b)

    Article  Google Scholar 

  • Zheng, J.G., Zhao, Z.J., Li, J., et al.: Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow. Phys. Fluids 26(3), 036102 (2014)

    Article  Google Scholar 

  • Zhou, B., Wang, X.J., Sun, C.X.: Effect of electrode structure on the parameters of dielectric barrier discharge. High Volt. Appar. 46(4), 31-34+39 (2010)

    Google Scholar 

  • Zhu, Y., Wu, Y., Cui, W., et al.: Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge. J. Phys. D Appl. Phys. 46(35), 355205 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Major Program of the National Natural Science Foundation of China (Grant Agreement No. 51790511), the National Natural Science Foundation of China (Grant Agreement Nos. 91941105, 91941301). Anonymous referees are thankfully acknowledge for insightful comments on the first draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liang.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Liang, H., He, Q. et al. Flow Separation Control of Nacelle in Crosswind by Microsecond Pulsed Surface Dielectric Barrier Discharge Plasma Actuator. Flow Turbulence Combust 107, 631–651 (2021). https://doi.org/10.1007/s10494-021-00247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00247-0

Keywords

Navigation