Skip to main content
Log in

Generalizing Korchmáros—Mazzocca Arcs

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

In this paper, we generalize the so-called Korchmáros—Mazzocca arcs, that is, point sets of size q + t intersecting each line in 0, 2 or t points in a finite projective plane of order q. For t ≠ 2, this means that each point of the point set is incident with exactly one line meeting the point set in t points.

In PG(2, pn), we change 2 in the definition above to any integer m and describe all examples when m or t is not divisible by p. We also study mod p variants of these objects, give examples and under some conditions we prove the existence of a nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aguglia and G. Korchmáros: Multiple blocking sets and multisets in Desarguesian planes, Des. Codes Cryptogr. 56 (2010), 177–181.

    Article  MathSciNet  Google Scholar 

  2. S. Ball, A. Blokhuis and F. Mazzocca: Maximal arcs in Desarguesian planes of odd order do not exist, Combinatorial 17 (1997), 31–41.

    Article  MathSciNet  Google Scholar 

  3. S. Ball and A. Blokhuis: An easier proof of the maximal arcs conjecture, Proc. Amer. Math. Soc. 126 (1998), 3377–3380.

    Article  MathSciNet  Google Scholar 

  4. S. Ball, A. Blokhuis, A. Gács, P. Sziklai and Zs. Weiner: On linear codes whose weights and length have a common divisor, Adv. Math. 211 (2007), 94–104.

    Article  MathSciNet  Google Scholar 

  5. A. Bishnoi, S. Mattheus and J. Schillewaert: Minimal multiple blocking sets, Electron. J. Combin. 25(4) (2018), P4.66

    Article  MathSciNet  Google Scholar 

  6. A. Blokhuis: Characterization of seminuclear sets in a finite projective plane, J. Geom. 40 (1991), 15–19.

    Article  MathSciNet  Google Scholar 

  7. A. Blokhuis and T. Szőnyi: Note on the structure of semiovals, Discrete Math. 106/107 (1992), 61–65.

    Article  Google Scholar 

  8. A. A. Bruen and J. A. Thas: Blocking sets, Geom. Dedicata 6 (1977), 193–203.

    MathSciNet  MATH  Google Scholar 

  9. C. J. Colbourn and J. H. Dinitz: Handbook of Combinatorial Designs, 2nd ed. Boca Raton, FL: Chapman and Hall/CRC, 2007.

    MATH  Google Scholar 

  10. B. Csajbók: On bisecants of Rédei type blocking sets and applications, Combinatorica 38 (2018), 143–166.

    Article  MathSciNet  Google Scholar 

  11. M. De Boeck and G. Van De Voorde: A linear set view on KM-arcs, J. Algebraic Combin. 44 (2016), 131–164.

    Article  MathSciNet  Google Scholar 

  12. M. De Boeck and G. Van De Voorde: Elation KM-Arcs, Combinatorica 39(3), 501–544.

  13. A. Gács: On regular semiovals in PG(2, q), J. Algebraic Combin. 23 (2006), 71–77.

    Article  MathSciNet  Google Scholar 

  14. A. Gács and Zs. Weiner: On (q+t, t) arcs of type (0, 2, t), Des. Codes Cryptogr. 29 (2003), 131–139.

    Article  Google Scholar 

  15. B. Green and T. Tao: On sets defining few ordinary lines, Discrete & Computational Geometry 50:2 (2013), 409–468.

    Article  MathSciNet  Google Scholar 

  16. J. W. P. Hirschfeld and T. Szőnyi: Sets in a finite plane with few intersection numbers and a distinguished point, Discrete Math., 97(1–3) (1991), 229–242.

    Article  MathSciNet  Google Scholar 

  17. G. Korchmáros and F. Mazzocca: On (q+t)-arcs of type (0, 2, t) in a Desarguesian plane of order q, Math. Proc. Cambridge Philos. Soc. 108(3) (1990), 445–459.

    Article  MathSciNet  Google Scholar 

  18. G. Korchmaros and T. Szőnyi: Affinely regular polygons in an affine plane, Contrib. Discret. Math. 3 (2008), 20–38.

    MathSciNet  MATH  Google Scholar 

  19. J. R. M. Mason: A class of ((pn−pm)(pn−1),pnpm)-arcs in PG(2,pn), Geom. Dedicata 15 (1984), 355–361.

    Article  MathSciNet  Google Scholar 

  20. E. Melchior: Über vielseite der projektive ebene, Deutsche Mathematik 5 (1941), 461–475.

    MathSciNet  MATH  Google Scholar 

  21. O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310(22) (2010), 3096–3107.

    Article  MathSciNet  Google Scholar 

  22. T. Pentilla and G. Royle: Sets of type (m, n) in affine and projective planes of order nine, Des. Codes Cryptogr. 6 (1995), 229–245.

    Article  MathSciNet  Google Scholar 

  23. P. Sziklai: Polynomials in finite geometry, Manuscript available online at http://web.cs.elte.hu/∼sziklai/polynom/poly08feb.pdf

  24. T. Szőnyi: On the number of directions determined by a set of points in an affine Galois plane, J. Combin. Theory Ser. A 74 (1996), 141–146.

    Article  MathSciNet  Google Scholar 

  25. T. Szőnyi and Zs. Weiner: Stability of k mod p multisets and small weight codewords of the code generated by the lines of PG(2, q), J. Combin. Theory Ser. A 157 (2018), 321–333.

    Article  Google Scholar 

  26. P. Vandendriessche: Codes of Desarguesian projective planes of even order, projective triads and (q + t, t)-arcs of type (0,2,t), Finite Fields Appl. 17(6) (2011), 521–531.

    Article  MathSciNet  Google Scholar 

  27. P. Vandendriessche: On KM-arcs in non-Desarguesian projective planes, Des. Codes Cryptogr. 87 (2019), 2129–2137.

    Article  MathSciNet  Google Scholar 

  28. F. Wettl: On the nuclei of a pointset of a finite projective plane, J. Geom. 30 (1987), 157–163.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the anonymous referees for their valuable comments and suggestions which have certainly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsa Weiner.

Additional information

We dedicate our work to the memory of our high school mathematics teacher, Dr. János Urbán to whom we are both very grateful.

The first author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the National Research, Development and Innovation Office — NKFIH, grant no. PD 132463. Both authors acknowledge the support of the National Research, Development and Innovation Office — NKFIH, grant no. K 124950.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csajbók, B., Weiner, Z. Generalizing Korchmáros—Mazzocca Arcs. Combinatorica 41, 601–623 (2021). https://doi.org/10.1007/s00493-020-4419-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-020-4419-z

Mathematics Subject Classification (2010)

Navigation