Skip to main content
Log in

On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology

  • John Tarbell
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Heart valves function in one of the most mechanically demanding environments in the body to ensure unidirectional blood flow. The resident valve interstitial cells respond to this mechanical environment and maintain the structure and integrity of the heart valve tissues to preserve homeostasis. While the mechanics of organ-tissue-cell heart valve function has progressed, the intracellular signaling network downstream of mechanical stimuli has not been fully elucidated. This has hindered efforts to both understand heart valve mechanobiology and rationally identify drug targets for treating valve disease. In the present work, we review the current literature on VIC mechanobiology and then propose mechanistic mathematical modeling of the mechanically-stimulated VIC signaling response to comprehend the coupling between VIC mechanobiology and valve mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aguado, B. A., K. B. Schuetze, J. C. Grim, C. J. Walker, A. C. Cox, T. L. Ceccato, et al. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci. Transl. Med. 11(509):eaav3233, 2019.

    Article  Google Scholar 

  2. Arzani, A., K. S. Masters, and M. R. K. Mofrad. Multiscale systems biology model of calcific aortic valve disease progression. ACS Biomater. Sci. Eng. 3(11):2922–2933, 2017.

    Article  Google Scholar 

  3. Ayoub, S., D. P. Howsmon, C.-H. Lee, M. S. Sacks (2020) On the role of predicted mitral valve interstitial cell deformation on its biosynthetic behavior. Biomech. Model. Mechanobiol.. https://doi.org/10.1007/s10237-020-01373-w

    Article  Google Scholar 

  4. Ayoub, S., C.-H. Lee, K. H. Driesbaugh, W. Anselmo, C. T. Hughes, G. Ferrari, et al. Regulation of valve interstitial cell homeostasis by mechanical deformation: Implications for heart valve disease and surgical repair. J. R. Soc. Interface 14(135):20170580, 2017.

    Article  Google Scholar 

  5. Ayoub, S., K. C. Tsai, A. H. Khalighi, and M. S. Sacks. The three-dimensional microenvironment of the mitral valve: Insights into the effects of physiological loads. Cell. Mol. Bioeng. 11(4):291–306, 2018.

    Article  Google Scholar 

  6. Balachandran, K., M. A. Bakay, J. M. Connolly, X. Zhang, A. P. Yoganathan, and R. J. Levy. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann. Thorac. Surg. 92(1):147–153, 2011.

    Article  Google Scholar 

  7. Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34(11):1655–1665, 2006.

    Article  Google Scholar 

  8. Baugh, L., M. C. Watson, E. C. Kemmerling, P. W. Hinds, G. S. Huggins, and L. D. Black. Knockdown of CD44 expression decreases valve interstitial cell calcification in vitro. Am. J. Phys.-Heart Circ. Physiol. 317(1):H26–H36, 2019.

    Article  Google Scholar 

  9. Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30(34):6593–6603, 2009.

    Article  Google Scholar 

  10. Benton, J. A., H. B. Kern, and K. S. Anseth. Substrate properties influence calcification in valvular interstitial cell culture. J. Heart Valve Dis. 17(6):689–699, 2009.

    Google Scholar 

  11. Blomme, B., C. Deroanne, A. Hulin, C. Lambert, J.-O. Defraigne, B. Nusgens, et al. Mechanical strain induces a pro-fibrotic phenotype in human mitral valvular interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling pathways. J. Mol. Cell. Cardiol. 135:149–159, 2019.

    Article  Google Scholar 

  12. Bludau, I. and R. Aebersold. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol. 21(6):327–340, 2020.

    Article  Google Scholar 

  13. Bouchareb, R., M.-C. Boulanger, D. Fournier, P. Pibarot, Y. Messaddeq, and P. Mathieu. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J. Mol. Cell. Cardiol. 67:49–59, 2014.

    Article  Google Scholar 

  14. Branchetti, E., R. Sainger, P. Poggio, J. B. Grau, J. Patterson-Fortin, J. E. Bavaria, et al. Antioxidant enzymes reduce DNA damage and early activation of valvular interstitial cells in aortic valve sclerosis. Arterioscler. Thromb. Vasc. Biol. 33(2), e66–e74 (2013).

    Article  Google Scholar 

  15. Butcher, J. T. and R. M. Nerem. Porcine aortic valve interstitial cells in three-dimensional culture: Comparison of phenotype with aortic smooth muscle cells. J. Heart Valve Dis. 13(3):478–486, 2004.

    Google Scholar 

  16. Byrne, K. M., N. Monsefi, J. C. Dawson, A. Degasperi, J.-C. Bukowski-Wills, N. Volinsky, et al. Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches. Cell Syst. 2(1):38–48, 2016.

    Article  Google Scholar 

  17. Carrion, K., J. Dyo, V. Patel, R. Sasik, S. A. Mohamed, G. Hardiman, et al. The long non-coding HOTAIR is modulated by cyclic stretch and Wnt/\(\beta \)-catenin in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE 9(5):e96577, 2014.

    Article  Google Scholar 

  18. Chan, C. E. and D. J. Odde. Traction dynamics of filopodia on compliant substrates. Science 322(5908):1687–1691, 2008.

    Article  Google Scholar 

  19. Chen, H.-C., P. A. Appeddu, H. Isoda, and J.-L. Guan. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271(42):26329–26334, 1996.

    Article  Google Scholar 

  20. Chen, J.-H., W. L. K. Chen, K. L. Sider, C. Y. Y. Yip, and C. A. Simmons. \(\beta \)-catenin mediates mechanically regulated, transforming growth factor-\(\beta \)1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 31(3):590–597, 2011.

    Article  Google Scholar 

  21. Codelia, V. A., G. Sun, and K. D. Irvine. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol. 24(17):2012–2017, 2014.

    Article  Google Scholar 

  22. Coffey, S., M. J. A. Williams, L. V. Phillips, I. F. Galvin, R. W. Bunton, and G. T. Jones. Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci. Rep. 6:36904, 2016.

    Article  Google Scholar 

  23. Cohen, J. E. Mathematics is biology’s next microscope, only better; Biology is mathematics’ next physics, only better. PLoS Biol. 2(12):e439, 2004.

    Article  Google Scholar 

  24. Coombs, K. E., A. T. Leonard, M. N. Rush, D. A. Santistevan, and E. L. Hedberg-Dirk. Isolated effect of material stiffness on valvular interstitial cell differentiation: Stiffness effects on valvular interstitial cell differentiation. J. Biomed. Mater. Res. Part A 105(1):51–61, 2017.

    Article  Google Scholar 

  25. Cushing, M. C., J.-T. Liao, and K. S. Anseth. Activation of valvular interstitial cells is mediated by transforming growth factor-\(\beta \)1 interactions with matrix molecules. Matrix Biol. 24(6):428–437, 2005.

    Article  Google Scholar 

  26. Cushing, M. C., P. D. Mariner, J. Liao, E. A. Sims, and K. S. Anseth. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. The FASEB J. 22(6):1769–1777, 2008.

    Article  Google Scholar 

  27. del Rio, A., R. Perez-Jimenez, R. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz. Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641, 2009.

    Article  Google Scholar 

  28. Dhurjati, P. and R. Mahadevan. Systems biology: The synergistic interplay between biology and mathematics. Canad. J. Chem. Eng. 86(2):127–141, 2008.

    Article  Google Scholar 

  29. Duan, B., Z. Yin, L. Hockaday Kang, R. L. Magin, and J. T. Butcher. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture. Acta Biomater. 36:–54, 2016.

    Article  Google Scholar 

  30. Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, et al. Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183, 2011.

    Article  Google Scholar 

  31. El Husseini, D., M.-C. Boulanger, A. Mahmut, R. Bouchareb, M.-H. Laflamme, D. Fournier, et al. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: Implication for calcific aortic valve disease. J. Mol. Cell. Cardiol. 72:146–156, 2014.

    Article  Google Scholar 

  32. Elosegui-Artola, A., I. Andreu, A. E. Beedle, A. Lezamiz, M. Uroz, A. J. Kosmalska, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171(6):1397–1410.e14, 2017.

    Article  Google Scholar 

  33. Fang, M., C. M. Alfieri, A. Hulin, S. J. Conway, and K. E. Yutzey. Loss of \(\beta \)-catenin promotes chondrogenic differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 34(12):2601–2608, 2014.

    Article  Google Scholar 

  34. Farrar, E. J., V. Pramil, J. M. Richards, C. Z. Mosher, and J. T. Butcher. Valve interstitial cell tensional homeostasis directs calcification and extracellular matrix remodeling processes via RhoA signaling. Biomaterials 105:25–37, 2016.

    Article  Google Scholar 

  35. Foster, C. T., F. Gualdrini, and R. Treisman. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev. 31(23-24):2361–2375, 2017.

    Article  Google Scholar 

  36. Galliher, A. J. and W. P. Schiemann. \(\beta _{3}\) integrin and Src facilitate transforming growth factor-\(\beta \) mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Br. Cancer Res. 8:R42, 2006.

    Article  Google Scholar 

  37. Ghigo, A., M. Laffargue, M. Li, and E. Hirsch. PI3K and calcium signaling in cardiovascular disease. Circ. Res. 121(3):282–292, 2017.

    Article  Google Scholar 

  38. Gonzalez Rodriguez, A., M. E. Schroeder, C. J. Walker, and K. S. Anseth. FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels. APL Bioeng. 2(4):046104, 2018.

    Article  Google Scholar 

  39. Gould, S. T., N. J. Darling, and K. S. Anseth. Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 8(9):3201–3209, 2012.

    Article  Google Scholar 

  40. Gould, R. A., H. C. Yalcin, J. L. MacKay, K. Sauls, R. Norris, S. Kumar, et al. Cyclic mechanical loading is essential for Rac1-mediated elongation and remodeling of the embryonic mitral valve. Curr. Biol. 26(1):27–37, 2016.

    Article  Google Scholar 

  41. Gu, X. and K. S. Masters. Role of the MAPK/ERK pathway in valvular interstitial cell calcification. Am. J. Physiol.-Heart Circ. Physiol. 296(6):H1748–H1757, 2009.

    Article  Google Scholar 

  42. Gu, X. and K. S. Masters. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. 93A:1620–1630, 2010.

    Google Scholar 

  43. Gu, X. and K. S. Masters. Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am. J. Physiol.-Heart Circ. Physiol. 300(2):H448–H458, 2011.

    Article  Google Scholar 

  44. Han, L. and A. I. Gotlieb. Fibroblast growth factor-2 promotes in vitro heart valve interstitial cell repair through the Akt1 pathway. Cardiovasc. Pathol. 21(5):382–389, 2012.

    Article  Google Scholar 

  45. Hartmann, S., A. J. Ridley, and S. Lutz. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front. Pharmacol. 6:276, 2015.

    Article  Google Scholar 

  46. He, H., F. Du, Y. He, Z. Wei, C. Meng, Y. Xu, et al. The Wnt-\(\beta \)-catenin signaling regulated MRTF-A transcription to activate migration-related genes in human breast cancer cells. Oncotarget 9(20):15239–15251, 2018.

    Article  Google Scholar 

  47. Hill, A. V. The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. 39(5):361–373, 1909.

    Article  Google Scholar 

  48. Hjortnaes, J., G. Camci-Unal, J. D. Hutcheson, S. M. Jung, F. J. Schoen, J. Kluin, et al. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform. Adv. Healthc. Mater. 4(1):121–130, 2015.

    Article  Google Scholar 

  49. Howsmon, D. P., B. V. Rego, E. Castillero, S. Ayoub, A. H. Khalighi, R. C. Gorman, et al. Mitral valve leaflet response to ischaemic mitral regurgitation: From gene expression to tissue remodelling. J. R. Soc. Interface 17(166):20200098, 2020.

    Article  Google Scholar 

  50. Huang, C. Y. and J. E. Ferrell. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. 93(19):10078–10083, 1996.

    Article  Google Scholar 

  51. Huang, H.-Y. S., J. Liao, and M. S. Sacks. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129(6):880–889, 2007.

    Article  Google Scholar 

  52. Hutcheson, J. D., J. Chen, M. Sewell-Loftin, L. M. Ryzhova, C. I. Fisher, Y. R. Su, et al. Cadherin-11 regulates cell-cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler. Thromb. Vasc. Biol. 33(1):114–120, 2013.

    Article  Google Scholar 

  53. Hutcheson, J. D., L. M. Ryzhova, V. Setola, and W. D. Merryman. 5-HT2B antagonism arrests non-canonical TGF-\(\beta \)1-induced valvular myofibroblast differentiation. J. Mol. Cell. Cardiol. 53(5):707–714, 2012.

    Article  Google Scholar 

  54. Hutcheson, J. D., R. Venkataraman, F. J. Baudenbacher, and W. David Merryman. Intracellular Ca2+ accumulation is strain-dependent and correlates with apoptosis in aortic valve fibroblasts. J. Biomech. 45(5):888–894, 2012.

    Article  Google Scholar 

  55. Imajo, M., K. Miyatake, A. Iimura, A. Miyamoto, and E. Nishida. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/\(\beta \)-catenin signalling: Hippo signalling regulates \(\beta \)-catenin localization. EMBO J. 31(5):1109–1122, 2012.

    Article  Google Scholar 

  56. Jermihov, P. N., L. Jia, M. S. Sacks, R. C. Gorman, J. H. Gorman, 3rd, and K. B. Chandran. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2(1):48–56, 2011.

    Article  Google Scholar 

  57. Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8, 2010.

    Article  Google Scholar 

  58. Ku, C.-H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71(3):548–556, 2006.

    Article  Google Scholar 

  59. Lammers, M., R. Rose, A. Scrima, and A. Wittinghofer. The regulation of mDia1 by autoinhibition and its release by RhoGTP. EMBO J. 24(23):4176–4187, 2005.

    Article  Google Scholar 

  60. Lam, N. T., I. Tandon, and K. Balachandran. The role of fibroblast growth factor 1 and 2 on the pathological behavior of valve interstitial cells in a three-dimensional mechanically-conditioned model. J. Biol. Eng. 13(1):45, 2019.

    Article  Google Scholar 

  61. Latif, N., P. Sarathchandra, A. H. Chester, and M. H. Yacoub. Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur. Heart J. 36(21):1335–1345, 2015.

    Article  Google Scholar 

  62. Latif, N., P. Sarathchandra, P. M. Taylor, J. Antoniw, N. Brand, and M. H. Yacoub. Characterization of molecules mediating cell-cell communication in human cardiac valve interstitial cells. Cell Biochem. Biophys. 45(3):255–264, 2006.

    Article  Google Scholar 

  63. Latif, N., P. Sarathchandra, P. M. Taylor, J. Antoniw, and M. H. Yacoub. Molecules mediating cell-ECM and cell-cell communication in human heart valves. Cell Biochem. Biophys. 43:275–287, 2005.

    Article  Google Scholar 

  64. Lee, C.-H., C. A. Carruthers, S. Ayoub, R. C. Gorman, J. H. Gorman, and M. S. Sacks. Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading. J. Theor. Biol. 373:26–39, 2015.

    Article  MATH  Google Scholar 

  65. Lee, C.-H., W. Zhang, K. Feaver, R. C. Gorman, J. H. Gorman, and M. S. Sacks. On the in vivo function of the mitral heart valve leaflet: Insights into tissue–interstitial cell biomechanical coupling. Biomech. Model. Mechanobiol. 16(5):1613–1632, 2017.

    Article  Google Scholar 

  66. Li, Z., X. Dong, Z. Wang, W. Liu, N. Deng, Y. Ding, et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7(4):399–404, 2005.

    Article  Google Scholar 

  67. Liu, H., Y. Sun, and C. A. Simmons. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J. Biomech. 46(11):1967–1971, 2013.

    Article  Google Scholar 

  68. Mabry, K. M., R. L. Lawrence, and K. S. Anseth. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49:47–56, 2015.

    Article  Google Scholar 

  69. Mabry, K. M., S. Z. Payne, and K. S. Anseth. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 74:31–41, 2016.

    Article  Google Scholar 

  70. Ma, H., A. R. Killaars, F. W. DelRio, C. Yang, and K. S. Anseth. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 131:131–144, 2017.

    Article  Google Scholar 

  71. Manning, B. D. and A. Toker. AKT/PKB signaling: Navigating the network. Cell 169(3):381–405, 2017.

    Article  Google Scholar 

  72. Mége, R. M. and N. Ishiyama. Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold Spring Harbor Perspect. Biol. 9(5):a028738, 2017.

    Article  Google Scholar 

  73. Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, et al. Correlation between heart valve intersititial cell stiffness and transvalvular pressure: Implications for collagen biosynthesis. Am. J. Physiol.-Heart Circ. Physiol. 290:H224–H231, 2006.

    Article  Google Scholar 

  74. Moraes, C., M. Likhitpanichkul, C. J. Lam, B. M. Beca, Y. Sun, and C. A. Simmons. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr. Biol. 5(4):673, 2013.

    Article  Google Scholar 

  75. Oppelt, A., D. Kaschek, S. Huppelschoten, R. Sison-Young, F. Zhang, M. Buck-Wiese, et al.. Model-based identification of TNF\(\alpha \)-induced IKK\(\beta \)-mediated and I\(\kappa \)B\(\alpha \)-mediated regulation of NF\(\kappa \)B signal transduction as a tool to quantify the impact of drug-induced liver injury compounds. Syst. Biol. Appl., 2018. https://doi.org/10.1038/s41540-018-0058-z

    Article  Google Scholar 

  76. Pegoraro, A. F., P. Janmey, and D. A. Weitz. Mechanical properties of the cytoskeleton and cells. Cold Spring Harbor Perspect. Biol. 9(11):a022038, 2017.

    Article  Google Scholar 

  77. Pho, M., W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol.-Heart Circ. Physiol. 294(4):H1767–H1778, 2008.

    Article  Google Scholar 

  78. Pipes, G. C. T., E. E. Creemers, and E. N. Olson. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev. 20(12):1545–1556, 2006.

    Article  Google Scholar 

  79. Pittet, P., K. Lee, A. J. Kulik, J.-J. Meister, and B. Hinz. Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds. J. Cell Sci. 121(6):877–886, 2008.

    Article  Google Scholar 

  80. Poggio, P., E. Branchetti, J. B. Grau, E. K. Lai, R. C. Gorman, J. H. Gorman, et al. Osteopontin-CD44v6 interaction mediates calcium deposition via phospho-Akt in valve interstitial cells from patients with noncalcified aortic valve sclerosis. Arterioscler. Thromb. Vasc. Biol. 34(9):2086–2094, 2014.

    Article  Google Scholar 

  81. Poggio, P., R. Sainger, E. Branchetti, J. B. Grau, E. K. Lai, R. C. Gorman, et al. Noggin attenuates the osteogenic activation of human valve interstitial cells in aortic valve sclerosis. Cardiovasc. Res. 98(3):402–410, 2013.

    Article  Google Scholar 

  82. Porras, A. M., N. C. A. van Engeland, E. Marchbanks, A. McCormack, C. V. C. Bouten, M. H. Yacoub, et al. Robust generation of quiescent porcine valvular interstitial cell cultures. J. Am. Heart Assoc. 6(3):5041, 2017.

    Article  Google Scholar 

  83. Puperi, D. S., A. Kishan, Z. E. Punske, Y. Wu, E. Cosgriff-Hernandez, J. L. West, et al. Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering. ACS Biomater. Sci. Eng. 2(9):1546–1558, 2016.

    Article  Google Scholar 

  84. Rabkin, S. W., P. Lodhia, and M. W. Luong. p38 MAP kinase in valve interstitial cells is activated by angiotensin II or nitric oxide/peroxynitrite, but reduced by toll-like receptor-2 stimulation. J. Heart Valve Dis. 18(6):653–661, 2009.

    Google Scholar 

  85. Raddatz, M. A., M. S. Madhur, and W. D. Merryman. Adaptive immune cells in calcific aortic valve disease. Am. J. Physiol.-Heart Circ. Physiol. 317(1):H141–H155, 2019.

    Article  Google Scholar 

  86. Rahaman, S. O., L. M. Grove, S. Paruchuri, B. D. Southern, S. Abraham, K. A. Niese, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Investig. 124(12):5225–5238, 2014.

    Article  Google Scholar 

  87. Rang, H. P. The receptor concept: pharmacology’s big idea. Br. J. Pharmacol. 147(Suppl 1):S9–S16, 2006.

    Article  Google Scholar 

  88. Rego, B. V., A. H. Khalighi, E. K. Lai, R. C. Gorman, J. H. Gorman III, M. S. Sacks. In vivo assessment of mitral valve leaflet remodeling following myocardial infarction. Sci. Rep. (in press) 2019.

    Google Scholar 

  89. Rego, B. V., S. M. Wells, C.-H. Lee, M. S. Sacks. Mitral valve leaflet remodelling during pregnancy: Insights into cell-mediated recovery of tissue homeostasis. J. R. Soc. Interface 13(125):20160709, 2016

    Article  Google Scholar 

  90. Rodriguez, K. J. and K. S. Masters. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. Part A 90(4):1043–1053, 2009.

    Article  Google Scholar 

  91. Sacks, M. S., W. D. Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.

    Article  Google Scholar 

  92. Sacks, M. S. and A. P. Yoganathan. Heart valve function: A biomechanical perspective. Philos. Trans. R. Soc. B: Biol. Sci. 362(1484):1369–1391, 2007.

    Article  Google Scholar 

  93. Santoro, R., D. Scaini, L. U. Severino, F. Amadeo, S. Ferrari, G. Bernava, et al. Activation of human aortic valve interstitial cells by local stiffness involves YAP-dependent transcriptional signaling. Biomaterials 181:268–279, 2018.

    Article  Google Scholar 

  94. Sorger, P. K., S. R. B. Allerheiligen, D. R. Abernethy, R. B. Altman, K. L. R. Brouwer, A. Califano, et al. Quantitative systems pharmacology in the post-genomic era: New approaches to discovering drugs and understanding therapeutic mechanisms: A NIH white paper by the QSP workshop group, 2011.

    Google Scholar 

  95. Sridhar, B. V., N. R. Doyle, M. A. Randolph, and K. S. Anseth. Covalently tethered TGF-\(\beta \)1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production: PEG hydrogel with tethered TGF-\(\beta \)1 enhances matrix production of chondrocytes. J. Biomed. Mater. Res. Part A 102:4464–4472, 2014.

    Article  Google Scholar 

  96. Stephens, E., C. Durst, J. Swanson, K. Grande-Allen, N. Ingels, and D. Miller. Functional coupling of valvular interstitial cells and collagen via \(\alpha _2\beta _1\) integrins in the mitral leaflet. Cell. Mol. Bioeng. 3:428–437, 2010.

    Article  Google Scholar 

  97. Stephens, E. H., C. A. Durst, J. L. West, and K. J. Grande-Allen. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater. 7(1):75–82, 2011.

    Article  Google Scholar 

  98. Tao, G., J.D. Kotick, and J. Lincoln. Heart valve development, maintenance, and disease: The role of endothelial cells. Curr. Top. Dev. Biol. 100:203–232, 2012.

    Article  Google Scholar 

  99. Throm Quinlan, A. M. and K. L. Billiar. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J. Biomed. Mater. Res. A 100A(9):2474–2482, 2012.

    Google Scholar 

  100. Throm Quinlan, A. M., L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and K. L. Billiar. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8):e23272, 2011.

    Article  Google Scholar 

  101. Tseng, H., M. L. Cuchiara, C. A. Durst, M. P. Cuchiara, C. J. Lin, J. L. West, et al. Fabrication and mechanical evaluation of anatomically-inspired quasilaminate hydrogel structures with layer-specific formulations. Ann. Biomed. Eng. 41(2):398–407, 2013.

    Article  Google Scholar 

  102. Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, M. L. Cuchiara, et al. Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng. Part A 20(19-20):2634–2645, 2014.

    Article  Google Scholar 

  103. van Putten, S., Y. Shafieyan, and B. Hinz. Mechanical control of cardiac myofibroblasts. J. Mol. Cell. Cardiol. 93:133–142, 2016.

    Article  Google Scholar 

  104. Vartiainen, M. K., S. Guettler, B. Larijani, and R. Treisman. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752, 2007.

    Article  Google Scholar 

  105. Wang, J.-h. Pull and push: Talin activation for integrin signaling. Cell Res. 22(11):1512–1514, 2012.

    Article  Google Scholar 

  106. Wang, H., S. M. Haeger, A. M. Kloxin, L. A. Leinwand, and K. S. Anseth. Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. Plos ONE 7(7):39969 (2012)

    Article  Google Scholar 

  107. Wang, H., M. W. Tibbitt, S. J. Langer, L. A. Leinwand, and K. S. Anseth. Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc. Natl. Acad. Sci. 110(48):19336–19341, 2013.

    Article  Google Scholar 

  108. Wang, Z., D.-Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E. N. Olson. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428:185–189, 2004.

    Article  Google Scholar 

  109. Weinberg, E. J. and M. R. Kaazempur Mofrad. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7(4):140–155, 2007.

    Article  Google Scholar 

  110. Witt, W., P.  Büttner, A. Jannasch, K. Matschke, and T. Waldow. Reversal of myofibroblastic activation by polyunsaturated fatty acids in valvular interstitial cells from aortic valves. Role of RhoA/G-actin/MRTF signalling. J. Mol. Cell. Cardiol. 74:127–138, 2014.

    Article  Google Scholar 

  111. Wu, Y., K. Jane Grande-Allen, and J. L. West. Adhesive peptide sequences regulate valve interstitial cell adhesion, phenotype and extracellular matrix deposition. Cell. Mol. Bioeng. 9(4):479–495, 2016.

    Article  Google Scholar 

  112. Yu, B., A. Hafiane, G. Thanassoulis, L. Ott, N. Filwood, M. Cerruti, et al. Lipoprotein(a) induces human aortic valve interstitial cell calcification. JACC: Basic Transl. Sci. 2(4):358–371, 2017.

    Google Scholar 

  113. Zent, J. and L.-W. Guo. Signaling mechanisms of myofibroblastic activation: Outside-in and inside-out. Cell. Physiol. Biochem. 49(3):848–868, 2018.

    Article  Google Scholar 

  114. Zhang, B. L., R. W. Bianco, and F. J. Schoen. Preclinical assessment of cardiac valve substitutes: Current status and considerations for engineered tissue heart valves. Front. Cardiovasc. Med. 6:72, 2019.

    Article  Google Scholar 

  115. Zhao, B., L. Li, L. Wang, C.-Y. Wang, J. Yu, and K.-L. Guan. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26(1):54–68, 2012.

    Article  Google Scholar 

Download references

Funding

This study supported by National Heart, Lung, and Blood Institute (R01 HL14250, R01 HL073021), American Heart Association (18POST33990101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Ethics declarations

Conflicts of interest

MSS has received research Grants R01 HL14250 and R01 HL073021 from the National Health Lung and Blood Institute. DPH has received postdoctoral fellowship 18POST33990101 from the American Heart Association.

Animal Studies

No animal studies were carried out by the authors for this article.

Human Studies/Informed Consent

No human studies were carried out by the authors for this article.

Additional information

Associate Editor Hanjoong Jo oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howsmon, D.P., Sacks, M.S. On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology. Cardiovasc Eng Tech 12, 15–27 (2021). https://doi.org/10.1007/s13239-020-00509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00509-4

Keywords

Navigation