Skip to main content

Advertisement

Log in

Interleaved Buck–Boost N-Phase High-Efficiency Converter with Soft Switching and Low Output Voltage Ripple

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an interleaved buck–boost n-phase converter with the soft-switching operation is proposed. All the switches are switched at zero voltage by applying an inductor between every two consecutive phases. These inductors cause the soft-switching operation through all switches of the converter by discharging the inherent voltage of switches’ capacitor and keeping the voltage of switch at zero until the switching period ends. Also, due to the existence of these inductors, the output diodes are disconnected during zero current. The large number of phases in this kind of converter reduces the output voltage ripple, output and input current ripple and increases the reliability of the converter. Increasing the number of phases of the converter reduces the current stress on the power switches and, thereby, leads to reducing conduction losses of the power switches. This kind of converter has a high efficiency due to its soft-switching operation of switches and reduction of the conduction losses of all switches. Finally, the experimental results of a four-phase prototype of this converter with 100 W output power for input voltage 20 V and output voltage 100 V are presented for determining the features of the desired converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alavi, P.; Mohseni, P.; Babaei, E.; Marzang, V.: An ultra-high Step-Up DC–DC converter with extendable voltage gain and soft switching capability. IEEE Trans. Ind. Electron (2020). https://doi.org/10.1109/TIE.2019.2952821

    Article  Google Scholar 

  2. P. Alavi,V: Marzang: E. Nazari: M. Dezhbord: and E. Babaei.: 2019 New Interleaved structure with high voltage-gain and low voltage-stress on semiconductors. In: Proc. Int. Conf. PEDSTC, Shiraz, Iran, pp. 498-503

  3. Talebian: S.H. Hosseini.: 2020 A New DC–DC Buck Converter with Soft-Switching Capability. In: Proc. Int. Conf. PEDSTC, Tehran, Iran, pp. 1-5

  4. Alavi, P.; Babaei, E.; Mohseni, P.; Marzang, V.: Study and analysis of a DC–DC soft-switched buck converter. IET Power Electron (2020). https://doi.org/10.1049/iet-pel.2019.0431

    Article  Google Scholar 

  5. Marzang, V.; Hosseini, S.H.; Rostami, N.; Alavi, P.; Mohseni, P.; Hashemzadeh, S.M.: A High Step-Up Non-Isolated DC–DC converter with flexible voltage gain. IEEE Trans. Power Electron (2020). https://doi.org/10.1109/TPEL.2020.2976829

    Article  Google Scholar 

  6. I. Talebian: and E. Babaei.: 2020 A Simple DC–DC Boost Converter with Soft-Switching Performance. In: Proc. Int. Conf. PEDSTC, Tehran, Iran, pp. 1-5.

  7. V. Marzang: P. Alavi: M. Dezhbord: S. H. Hosseini: and N. Rostami.: 2019 Symmetric extendable ultra high step-up non-ısolated DC-DC converter. In: Proc. Int. Conf. PEDSTC, Shiraz, Iran, pp. 683-688

  8. Singh, S.; Singh, B.; Bhuvaneswari, G.; Bist, V.: Improved power quality switched mode power supply using buck-boost converter. IEEE Trans. Ind. Appl. 52(6), 5194–5202 (2016)

    Article  Google Scholar 

  9. Gobbato, C.; Kohler, S.V.; de Souza, I.H.; Denardin, G.W.; de Pelegrini Lopes, J.: Integrated Topology of DC–DC Converter for LED Street Lighting System Based on Modular Drivers. IEEE Trans. Ind. Appl. PP(99), 1–1 (2018)

    Google Scholar 

  10. Henao, G.A.; Castro, J.A.; Trujillo, C.L.; Narváez, E.A.: Design and development of a LED driver prototype with a single-stage pfc and low current harmonic distortion. IEEE Latin Am. Trans. 15(8), 1368–1375 (2017)

    Article  Google Scholar 

  11. Zhang, Y.; Liu, H.; Li, J.; Sumner, M.: A Low-Current Ripple and Wide Voltage-gain range bidirectional DC–DC converter with coupled inductor. IEEE Trans. Power Electron 35(2), 1525–1535 (2020)

    Article  Google Scholar 

  12. Mahery, H.M.; Babaei, E.: Mathematical Modeling of Buck-Boost Dc–Dc converter and investigation of converter elements on transient and steady state responses. Int. J. Electr. Power Energy Syst. 44(1), 949–963 (2013)

    Article  Google Scholar 

  13. Wu, H.; Lu, Y.; Sun, K.; Xing, Y.: Phase-shift controlled isolated buck-boost converter with active-clamped three-level rectifier (AC-TLR) featuring soft-switching within wide operation range. IEEE Trans. Power Electron. 31(3), 2372–2386 (2016)

    Article  Google Scholar 

  14. Yang, J.W.; Do, H.L.: Soft-Switching Bidirectional DC–DC Converter Using a Lossless Active Snubber. IEEE Trans. Circutes Syst-I 61(5), 1588–1596 (2014)

    Google Scholar 

  15. Xue, J.; Lee, H.: A 2MHz 60W zero-voltage switching Synchronous non-inverting buck-boost converter with reduced component values. IEEE Trans. Circuits and Systems-II 62(7), 716–720 (2015)

    Article  Google Scholar 

  16. Jiang, L.; Mi, C.C.; Li, S.; Yin, C.; Li, J.: An improved soft-switching buck converter with coupled inductor. IEEE Trans. Power Electron 28(11), 4885–4891 (2013)

    Article  Google Scholar 

  17. Zhang, X.; Jiang, L.; Deng, J.; Li, S.; Chen, Z.: Analysis and design of a new soft-switching boost converter with a coupled inductor. IEEE Trans. Power Electron 29(8), 4270–4277 (2014)

    Article  Google Scholar 

  18. Chen, G.; Deng, Y.; Tao, Y.; He, X.; Wang, Y.; Hu, Y.: Topology Derivation and generalized analysis of zero-voltage-switching synchronous DC–DC converters with coupled inductors. IEEE Trans. Ind. Electron 63(8), 4805–4815 (2016)

    Article  Google Scholar 

  19. Tarzamni, H.; Babaei, E.: A full soft switching ZVZCS Flyback converter using an active auxiliary cell. IEEE Trans. Ind. Electron. 64(2), 1123–1129 (2017)

    Article  Google Scholar 

  20. Babaei, E.; Mahmoodieh, M.E.S.; Sabahi, M.: Investigating Buck DC-DC converter operation in different operational modes and obtaining the minimum output voltage ripple considering filter size. J. Power Electron 11(6), 793–800 (2011)

    Article  Google Scholar 

  21. Babaei, E.; Mahmoodieh, M.E.S.: Operational Modes and Output-Voltage-Ripple Analysis and Design Considerations of Buck-Boost DC–DC Converters. IEEE Trans. Ind. Electron. 59(1), 381–391 (2012)

    Article  Google Scholar 

  22. Babaei, E.; Razavi Nesaz, S.; Javadi Khasraghi, K.: Assessment of step-up dc-dc converter with high voltage ratio in different operational modes. Arab. J. Sci. Eng. (AJSE) 39, 2033–2043 (2014)

    Article  Google Scholar 

  23. Babaei, E.; Mahmoodieh, M.E.S.: Calculation of Output Voltage Ripple and Design Considerations of SEPIC Converter. IEEE Trans. Ind. Electron. 61(3), 1213–1222 (2014)

    Article  Google Scholar 

  24. Babaei, E.; Mahmoodieh, M.E.S.: Systematical method of designing the elements of the Cuk converter. Int. J. Electr. Power Energy Syst. 55, 351–361 (2014)

    Article  Google Scholar 

  25. Yan, Z.; Zeng, J.; Lin, W.; Liu, J.: A Novel Interleaved Nonisolated Bidirectional DC–DC Converter with High Voltage-Gain and Full-Range ZVS. IEEE Trans. Power Electron. 35(7), 7191–7203 (2020)

    Article  Google Scholar 

  26. M. Gerber: J. A. Ferreira: I. W. Hofsaer: and N. Seliger.: 2004 Interleaving optimization in synchronous rectified DC/DC converters. In: Proc. IEEE Power Electron. Spec. Conf. (PESC’04), pp. 4655–4661.

  27. Neugebauer, T.C.; Perreault, D.J.: Computer-Aided Optimization of DC/DC Converters for Automotive Applications. IEEE Trans. Power Electron 18(3), 775–783 (2003)

    Article  Google Scholar 

  28. Li, W.; Fan, L.; Zhao, Y.; He, X.; Xu, D.; Wu, B.: High-Step-Up and High-Efficiency Fuel-Cell Power-Generation System with Active-Clamp Flyback-Forward Converter. IEEE Trans. Ind. Electron. 59(1), 599–610 (2012)

    Article  Google Scholar 

  29. Yi, J.H.; Choi, W.; Cho, B.H.: Zero-Voltage Transition Interleaved Boost Converter with an Auxiliary Coupled Inductor. IEEE Trans. Power Electron 32(8), 5917–5930 (2017)

    Article  Google Scholar 

  30. Moo, C.S.; Chen, Y.J.; Cheng, H.L.; Hsieh, Y.C.: Twin-Buck Converter with Zero-Voltage Transition. IEEE Trans. Ind. Electron 58(6), 2366–2371 (2011)

    Article  Google Scholar 

  31. Broussev, S.S.; Tchamov, N.T.: Two-Phase Self-Assisted Zero-Voltage Switching DC–DC Converter. IEEE Trans. Circuits Syst. II 60(3), 157–167 (2013)

    Article  Google Scholar 

  32. Maali Amiri, E.; Vahidi, B.: Double-deck buck-boost converter with soft switching operation. IEEE Trans. Power Electron 31(6), 4324–4330 (2016)

    Article  Google Scholar 

  33. Li, R.T.H.; Ho, C.N.M.: An Active Snubber Cell for N-Phase Interleaved DC–DC Converters. IEEE J. Emerg. Select. Topics Power Electron 4(2), 344–351 (2016)

    Article  Google Scholar 

  34. Lee, K.-J.; Park, B.-G.; Kim, R.-Y.; Hyun, D.-S.: Nonisolated ZVT two-inductor boost converter with a single resonant inductor for high step-up applications. IEEE Trans. Power Electron. 27(4), 1966–1973 (2011)

    Article  Google Scholar 

  35. Chen, J.; Maksimovic, D.; Erickson, R.W.: Analysis and design of a low-stress buck-boost converter in universal-input PFC applications. IEEE Trans. Power Electron. 21(2), 320–329 (2006)

    Article  Google Scholar 

  36. Pavlovský, M.; Guidi, G.; Kawamura, A.: Buck/boost DC–DC converter topology with soft switching in the whole operating region. IEEE Trans. Power Electron. 29(2), 851–862 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Babaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A., Ranjbarizad, V. & Babaei, E. Interleaved Buck–Boost N-Phase High-Efficiency Converter with Soft Switching and Low Output Voltage Ripple. Arab J Sci Eng 46, 9497–9513 (2021). https://doi.org/10.1007/s13369-021-05337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05337-9

Keywords

Navigation