Skip to main content
Log in

Simulation of Pool and Compartment Fire Using Flamelet Generated Manifold With/Without Radiation Coupling

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

One of the critical issues in fire dynamic simulation is the selection of suitable combustion model. Typically, combustion models based on infinite fast chemistry are used in fires. In this paper, the flamelet generated manifold (FGM) has been used as a combustion model and the fireFoam solver of OpenFOAM has been used. Two distinct FGMs, with and without radiation coupling, have been investigated to illustrate the role of radiation in simulations. The energy equation with discrete ordinates radiation model is used for coupling of FGM with radiation. These models will be examined in two scenarios of the pool and compartment fire. The FGM with the heat equation is in a good agreement with the experiments. In addition, the basic FGM has a deviation from the experimental results, in a pool fire scenario. The mean of vertical velocity of basic FGM and FGM with energy equation has 40 and 15 percent relative error, respectively, in the pool fire scenario. In the compartment fire, FGM model, with and without radiation coupling shows the same behavior and the velocity results have 9% relative error in the doorway. In general, the radiation coupling in pool fire is more important than compartment scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamic

FGM:

Flamelet generated manifold

LES:

Large eddy simulation

LES_iq:

Large eddy simulation index quality

SGS:

Subgrid-scale

SLFM:

Stesdy laminar flamelet method

C p :

Specific heat

D :

Derivative

dt :

Time step

g :

Gravity

p :

Pressure

S :

Source term

T :

Temperature

t :

Time

u :

Velocity

x :

Coordinate

z :

Mixture fraction

ε :

Turbulent dissipation rate

k :

Mean turbulent kinetic energy

ν :

Kinematic viscosity, m2/s

ρ :

Density

i, j :

Space index

iq :

Index quality

Ref:

Reference

 ~ :

Favre filtering

References

  1. Chen, T.B.Y.; Yuen, A.C.Y.; Yeoh, G.H.; Yang, W.; Chan, Q.N.: Fire risk assessment of combustible exterior cladding using a collective numerical database. Fire 2(1), 11 (2019)

    Article  Google Scholar 

  2. Zhou, L.; Zeng, D.; Li, D.; Chaos, M.: Total radiative heat loss and radiation distribution of liquid pool fire flames. Fire Saf. J. 89, 16–21 (2017). https://doi.org/10.1016/j.firesaf.2017.02.004

    Article  Google Scholar 

  3. Ahmadi, O.; Mortazavi, S.B.; Pasdarshahri, H.; Mohabadi, H.A.: Consequence analysis of large-scale pool fire in oil storage terminal based on computational fluid dynamic (CFD). Process Saf. Environ. Prot. 123, 379–389 (2019). https://doi.org/10.1016/j.psep.2019.01.006

    Article  Google Scholar 

  4. Zhou, Y.; Bu, R.; Gong, J.; Geng, Z.; Fu, H.; Yi, L.: Effect of ambient wind speed on pressure distribution and smoke movement in single and multiple compartment fires. Combust. Sci. Technol. 191(8), 1354–1379 (2019)

    Article  Google Scholar 

  5. Shih, Y.-C.; Yang, A.-S.; Lu, C.-W.: Using air curtain to control pollutant spreading for emergency management in a cleanroom. Build. Environ. 46(5), 1104–1114 (2011)

    Article  Google Scholar 

  6. Dias, J.; Gogotsi, A.; Viegas, J.C.: CFD simulation of the aerodynamic sealing of plane jets. IOSR J. Eng. 9, 31–53 (2019). https://doi.org/10.5281/zenodo.3685981

    Article  Google Scholar 

  7. White, J.; Vilfayeau, S.; Marshall, A.; Trouve, A.; McDermott, R.J.: Modeling flame extinction and reignition in large eddy simulations with fast chemistry. Fire Saf. J. 90, 72–85 (2017)

    Article  Google Scholar 

  8. Fancello, A.A.: Dynamic and Turbulent Premixed Combustion Using Flamelet-Generated Manifold in openFOAM. BOXPress, Campinas (2014)

    Google Scholar 

  9. Han, C.; Wang, H.: A comparison of different approaches to integrate flamelet tables with presumed-shape PDF in flamelet models for turbulent flames. Combust. Theor. Model. 21(4), 603–629 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cheung, S.C.; Yeoh, G.: A fully-coupled simulation of vortical structures in a large-scale buoyant pool fire. Int. J. Therm. Sci. 48(12), 2187–2202 (2009)

    Article  Google Scholar 

  11. Yeoh, G.; Cheung, S.; Tu, J.; Barber, T.: Comparative large Eddy simulation study of a large-scale buoyant fire. Heat Mass Transf. 47(9), 1197–1208 (2011)

    Article  Google Scholar 

  12. Yuen, A.C.; Yeoh, G.H.; Timchenko, V.; Cheung, S.C.; Chan, Q.N.; Chen, T.: On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int. J. Comput. Fluid Dyn. 31(6–8), 324–337 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yuen, A.; Yeoh, G.; Timchenko, V.; Cheung, S.; Barber, T.: Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int. J. Heat Mass Transf. 96, 171–188 (2016)

    Article  Google Scholar 

  14. Marchand, A.; Verma, S.; Xu, R.; White, J.; Marshall, A.; Rogaume, T.; Richard, F.; Luche, J.; Trouvé, A.: Simulations of a turbulent line fire with a steady flamelet combustion model coupled with models for non-local and local gas radiation effects. Fire Saf. J. 106, 105–113 (2019)

    Article  Google Scholar 

  15. Nguyen, T.M.; Sirignano, W.A.: The impacts of three flamelet burning regimes in nonlinear combustion dynamics. Combust. Flame 195, 170–182 (2018)

    Article  Google Scholar 

  16. Pierce, C.D.; Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  Google Scholar 

  17. Both, A.: RANS-FGM simulation of n-heptane spray ame in OpenFOAM. Master thesis, Delft University of Technology, Netherlands (2017)

  18. Wollny, P.; Rogg, B.; Kempf, A.: Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust non-premixed flamelet approach. Fuel 216, 44–52 (2018)

    Article  Google Scholar 

  19. Wimer, N.T.; Day, M.S.; Lapointe, C.; Makowiecki, A.S.; Glusman, J.F.; Daily, J.W.; Rieker, G.B.; Hamlington, P.E.: High-resolution numerical simulations of a large-scale helium plume using adaptive mesh refinement (2019). arXiv preprint: arXiv:1901.10554

  20. Hashemi, S.; Fattahi, A.; Sheikhzadeh, G.: The effect of air preheating on a sudden-expansion turbulent diffusion air-fuel flame. Arab. J. Sci. Eng. 38(10), 2801–2808 (2013)

    Article  Google Scholar 

  21. Tieszen, S.; O'hern, T.; Weckman, E. ; Schefer, R.: Experimental study of the effect of fuel mass flux on a 1-m-diameter methane fire and comparison with a hydrogen fire. Combust. Flame 139(1–2), 126–141 (2004).

  22. Steckler, K.D.; Quintiere, J.G.; Rinkinen, W.J.: Flow induced by fire in a compartment. In: Symposium (International) on Combustion, vol. 1, pp. 913–920. Elsevier, Hoboken (1982)

  23. Maragkos, G.; Beji, T.; Merci, B.: Towards predictive simulations of gaseous pool fires. Proc. Combust. Inst. 37(3), 3927–3934 (2019)

    Article  Google Scholar 

  24. Maragkos, G.; Merci, B.: Large eddy simulations of CH4 fire plumes. Flow Turbul. Combust. 99, 239–278 (2017). https://doi.org/10.1007/s10494-017-9803-4

    Article  Google Scholar 

Download references

Funding

This study was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Pasdarshahri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzadeh, M., Heidarinejad, G. & Pasdarshahri, H. Simulation of Pool and Compartment Fire Using Flamelet Generated Manifold With/Without Radiation Coupling. Arab J Sci Eng 46, 7239–7248 (2021). https://doi.org/10.1007/s13369-020-05315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05315-7

Keywords

Navigation