Skip to main content

Advertisement

Log in

Calibration of a hypoplastic model using genetic algorithms

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This article proposes an optimization framework, based on genetic algorithms (GA), to calibrate the constitutive law of von Wolffersdorff. This constitutive law, known as Sand Hypoplasticity (SH), allows for robust and accurate modelling of the soil behaviour but requires a complex calibration involving eight parameters. The proposed optimization can automatically fit these parameters from the results of an oedometric and a triaxial drained compression test, by combining the GA with a numerical solver that integrates the SH in the test conditions. By repeating the same calibration several times, the stochastic nature of the optimizer enables the uncertainty quantification of the calibration parameters and allows studying their relative importance on the model prediction. After validating the numerical solver on the ExCalibre-Laboratory software from the SoilModels’ website, the GA calibration is tested on a synthetic dataset to analyse the convergence and the statistics of the results. In particular, a correlation analysis reveals that two couples of the eight model parameters are strongly correlated. Finally, the calibration procedure is tested on the results from von Wolffersdorff, 1996, and Herle and Gudehus, 1999, on the Hochstetten sand. The model parameters identified by the GA optimization improves the matching with the experimental data and hence lead to a better calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See https://soilmodels.com/excalibre-en/.

References

  1. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  2. Calista M, Pasculli A, Sciarra N (2015) Reconstruction of the geotechnical model considering random parameters distributions. Eng Geol Soc Territ 2:1347–1351. https://doi.org/10.1007/978-3-319-09057-3_237

    Article  Google Scholar 

  3. Dafalias Y (1986) Bounding surface plasticity. I: mathematical foundation and hypoplasticity. J Eng Mech ASCE 112:966–987

    Article  Google Scholar 

  4. Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28(4):279–321. https://doi.org/10.1002/nag.338

    Article  Google Scholar 

  5. Duriez T, Brunton SL, Noack BR (2017) Machine learning control—taming nonlinear dynamics and turbulence. Springer, Berlin. https://doi.org/10.1007/978-3-319-40624-4

    Book  MATH  Google Scholar 

  6. Fuentes W, Triantafyllidis T (2015) ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int J Numer Anal Methods Geomech 39(11):1235–1254. https://doi.org/10.1002/nag.2370

    Article  Google Scholar 

  7. Fuentes W, Wichtmann T, Gil M, Lascarro C (2020) ISA-hypoplasticity accounting for cyclic mobility effects for liquefaction analysis. Acta Geotech 15(6):1513–1531. https://doi.org/10.1007/s11440-019-00846-2

    Article  Google Scholar 

  8. Gambirasio L, Chiantoni G, Rizzi E (2014) On the consequences of the adoption of the Zaremba–Jaumann objective stress rate in FEM codes. Arch Comput Methods Eng 23(1):39–67

    Article  MathSciNet  Google Scholar 

  9. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Choice Rev Online 27(02):270936. https://doi.org/10.5860/choice.27-0936

    Article  Google Scholar 

  10. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Article  Google Scholar 

  11. Gudehus G, Amorosi A, Gens A, Herle I, Kolymbas D, Mašín D, Muir Wood D, Nova R, Niemunis A, Pastor M, Tamagnini C, Viggiani G (2008) The soilmodels.info project. Int J Numer Anal Methods Geomech 32:1571–1572

    Article  Google Scholar 

  12. Haupt RL, Haupt SE (2003) Practical genetic algorithms. Wiley, London. https://doi.org/10.1002/0471671746

    Book  MATH  Google Scholar 

  13. Herle I, Gudehus G (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech Cohesive-Frict Mater 4(5):461–486

    Article  Google Scholar 

  14. Holland JH (1992) Adaptation in natural and artificial systems. The MIT Press, Cambridge. https://doi.org/10.7551/mitpress/1090.001.0001

    Book  Google Scholar 

  15. Imposimato S, Nova R (1998) An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mech Cohes-Frict Mater 3:65–87

    Article  Google Scholar 

  16. Jekel CF, Venter G, Venter MP, Stander N, Haftka RT (2018) Similarity measures for identifying material parameters from hysteresis loops using inverse analysis. Int J Mater Form 12(3):355–378. https://doi.org/10.1007/s12289-018-1421-8

    Article  Google Scholar 

  17. Jin Y, Yin Z, Zhou W, Liu X (2020) Intelligent model selection with updating parameters during staged excavation using optimization method. Acta Geotech 15(9):2473–2491. https://doi.org/10.1007/s11440-020-00936-6

    Article  Google Scholar 

  18. Kadlíček T, Janda T, Šejnoha M (2016) Calibration of hypoplastic models for soils. Appl Mech Mater 821:503–511

    Article  Google Scholar 

  19. Kadlíček T, Janda T, Šejnoha M (2019) Automatic online calibration software excalibre. In: 24th international conference engineering mechanics, Svratka, pp 353–356

  20. Kolymbas D (2000) Introduction to hypoplasticity. In: Advances in geotechnical engineering and tunnelling. A. A. Balkema, Rotterdam

  21. Kolymbas D, Bauer E (1993) Soft oedometer—a new testing device and its application for the calibration of hypoplastic constitutive laws. Geotech Test J 16(2):263–270

    Article  Google Scholar 

  22. Kolymbas D, Wu W (1990) Recent results of triaxial tests with granular materials. Powder Technol 60:99–119

    Article  Google Scholar 

  23. Lee C (2018) A review of applications of genetic algorithms in operations management. Eng Appl Artif Intell 76:1–12. https://doi.org/10.1016/j.engappai.2018.08.011

    Article  Google Scholar 

  24. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    Article  Google Scholar 

  25. Mašín D (2013) Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech 8(5):481–496

    Article  Google Scholar 

  26. Mašín D (2014) Clay hypoplasticity model including stiffness anisotropy. Géotechnique 64(3):232–238

    Article  Google Scholar 

  27. Mašín D (2015) The influence of experimental and sampling uncertainties on the probability of unsatisfactory performance in geotechnical applications. Géotechnique 65:897–910

    Article  Google Scholar 

  28. Mašín D (2018) Modelling of soil behaviour with hypoplasticity: another approach to soil constitutive modelling. Springer, Cham

    Google Scholar 

  29. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. In: Japanese society of civil engineers, vol 232, pp 59–70

  30. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin. https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  31. Mirjalili S, Dong JS, Sadiq AS, Faris H (2019) Genetic algorithm: theory, literature review, and application in image reconstruction. In: Nature-inspired optimizers. Springer, Berlin, pp 69–85. https://doi.org/10.1007/978-3-030-12127-3_5

  32. Ng CWW, Boonyarak TDM (2015) Effects of pillar depth and shielding on the interaction of crossing multitunnels. J Geotech Geoenviron Eng

  33. Niemunis A (2003) Extended hypoplastic models for soils. Dissertation, Ruhr University Bochum, Germany

  34. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frict Mater 2:279–299

    Article  Google Scholar 

  35. Niemunis A, Grandas-Tavera C, Prada-Sarmiento L (2009) Anisotropic visco-hypoplasticity. Acta Geotech 4(4):293–314

    Article  Google Scholar 

  36. Nova R (1994) Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes. J Mech Behav Mater 5(2):193–201

    Article  Google Scholar 

  37. Oliphant TE (2006) A guide to NumPy, vol 1. Trelgol Publishing

  38. Pasculli A, Calista M, Sciarra N (2018) Variability of local stress states resulting from the application of Monte Carlo and finite difference methods to the stability study of a selected slope. Eng Geol 245:370–389. https://doi.org/10.1016/j.enggeo.2018.09.009

    Article  Google Scholar 

  39. Reyes DK, Rodriguez-Marek A, Lizcano A (2009) A hypoplastic model for site response analysis. Soil Dyn Earthq Eng 29:173–184. https://doi.org/10.1016/j.soildyn.2008.01.003

    Article  Google Scholar 

  40. Samarajiva PM (2000) Constitutive modeling of cohesionless granular materials using disturbed state concept. Dissertation, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge

  41. Samarajiva P, Macari E, Wathugala W (2005) Genetic algorithms for the calibration of constitutive models for soils. Int J Geomech 5(3):206–217. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(206)

    Article  Google Scholar 

  42. Shapiro J (2001) Genetic algorithms in machine learning. In: Machine learning and its applications. Springer, Berlin, pp 146–168. https://doi.org/10.1007/3-540-44673-7_7

  43. Tafili M, Triantafyllidis T (2020) AVISA: anisotropic visco-ISA model and its performance at cyclic loading. Acta Geotech 15(9):2395–2413. https://doi.org/10.1007/s11440-020-00925-9

    Article  Google Scholar 

  44. Tamagnini C, Viggiani G, Chambon R (2000) A review of two different approaches to hypoplasticity. In: Kolymbas D (ed) Constitutive modelling of granular materials. Springer, Berlin, pp 107–145

    Chapter  Google Scholar 

  45. Wang S, Wu W (2020) A simple hypoplastic model for overconsolidated clays. Acta Geotech. https://doi.org/10.1007/s11440-020-01000-z

    Article  Google Scholar 

  46. Wang S, Wu W (2020) Validation of a simple hypoplastic constitutive model for overconsolidated clays. Acta Geotech. https://doi.org/10.1007/s11440-020-01105-5

    Article  Google Scholar 

  47. Wolffersdorff P (1996) A hypoplastic for granular material with a predefined limit state surface. Mech Cohes-Frict Mater 1:251–271

    Article  Google Scholar 

  48. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862. https://doi.org/10.1002/nag.1610181203

    Article  MATH  Google Scholar 

  49. Wu W, Kolymbas D (1990) Numerical testing of the stability criterion for hypoplastic constitutive equations. Mech Mater 9:245–253

    Article  Google Scholar 

  50. Wu W, Kolymbas D (2000) Hypoplasticity then and now. Springer, Berlin, pp 57–105. https://doi.org/10.1007/978-3-642-57018-6_4

    Book  Google Scholar 

  51. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive model with critical state for granular materials. Mech Mater 23(1):45–69. https://doi.org/10.1016/0167-6636(96)00006-3

    Article  Google Scholar 

  52. Wu W, Lin J, Wang X (2017) A basic hypoplastic constitutive model for sand. Acta Geotech 12:1373–1382

    Article  Google Scholar 

  53. Wu W, Bauer E, Niemunis AH(1993) Workshop on modern approaches to plasticity for granular materials, Horton, Greece. In: Kolymbas D (ed) A visco-hypoplastic model for cohesive soils. Elsevier, Amsterdam, pp 365–383

  54. Yin ZY, Jin YF, Shen JSL, Hicher PY (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42(2):70–94

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support and the discussions with the engineer Pierantonio Cascioli, from GEINA srl, and Gabriele Sandro Toro, laboratory technician of the Department of Engineering and Geology of the G. D’Annunzio University, Chieti-Pescara (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco José Mendez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez, F.J., Pasculli, A., Mendez, M.A. et al. Calibration of a hypoplastic model using genetic algorithms. Acta Geotech. 16, 2031–2047 (2021). https://doi.org/10.1007/s11440-020-01135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01135-z

Keywords

Navigation