Skip to main content

Advertisement

Log in

The scale of effect depends on operational definition of forest cover—evidence from terrestrial mammals of the Brazilian savanna

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Determining the appropriate scale at which to study species’ interactions with their environment is a great challenge.

Objective

We investigated the spatial extent at which landscape structure affects the occurrence of four species of terrestrial mammalian herbivores in the Brazilian savannas and examined whether those scales could be explained by species ecological traits and how forest habitat was operationally defined.

Methods

Using maps of forest cover, camera trapping and occupancy modelling, we determined the relations between three landscape metrics (percentage of forest cover, patch density and edge density) and the occurrence of four species. To determine the optimal scale of effect for each species, we computed landscape metrics at different spatial extents (from 0.5 to 10 km radius) from camera trap locations and for three forest maps, each using different operational definitions of a forest pixel: minimum of tree cover of 25, 50 or 75%.

Results

The occupancy models revealed scales of effect of 0.5 to 2 km with the scale of effect being similar among three of the species. However, the probability of a scale of effect being detected depended upon how forest is operationally defined, being greater when forest was defined with greater tree cover, particularly for forest-specialist species.

Conclusions

Besides biological traits, the way habitat is operationally defined shapes our ability to detect the scale of effects. Thus, it is necessary not to adopt a multi-scale approach, but also to use multiple operational definitions of habitat, considering particularities of how each species interact with their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliaga-Rossel E, Kays R, Fragoso J (2008) Home-range use by the Central American agouti (Dasyprocta punctata) on Barro Colorado Island, Panama. J Trop Ecol 24:367–374

    Article  Google Scholar 

  • Arévalo-Sandi A, Bobrowiec PED, Chuma VJUR, Norris D (2018) Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13:e0193752

    Article  PubMed  PubMed Central  Google Scholar 

  • Banks-Leite C, Pardini R, Tambosi LR, Pearse WD, Bueno AA, Bruscagin RT, Condez TH, Dixo M, Igari AT, Martensen AC, Metzger JP (2014) Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Bastian O, Krönert R, Lipský Z (2006) Landscape diagnosis on different space and time scales—a challenge for landscape planning. Landsc Ecol 21:359–374

    Article  Google Scholar 

  • Bennett B (2002) What is a forest? On the vagueness of certain geographic concepts. Topoi 20:189–201

    Article  Google Scholar 

  • Bennett A, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Article  Google Scholar 

  • Bhakti T, Goulart F, de Azevedo CS, Antonini Y (2018) Does scale matter? The influence of three-level spatial scales on forest bird occurrence in a tropical landscape. PLoS ONE 13:e0198732

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodmer RE (1989) Ungulate biomass in relation to feeding strategy within Amazonian forests. Oecologia 81:547–550

    Article  PubMed  Google Scholar 

  • Bodmer RE (1991) Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23:255–261

    Article  Google Scholar 

  • Bogoni JA, Graipel ME, Oliveira-Santos LGR, Cherem JJ, Giehl EL, Peroni N (2017) What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity? Biol Conserv 211:85–94

    Article  Google Scholar 

  • Bonanomi J, Tortato FR, Gomes FSR, Penha JM, Bueno AS, Peres CS (2019) Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian cerrado biome. Perspect Ecol Conserv 17:26–31

    Google Scholar 

  • Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc Ecol 24:907–918

    Article  Google Scholar 

  • Bovendorp RS, Brum FT, McCleery RA, Baiser B, Loyola R, Cianciaruso MV, Galetti M (2019) Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42:23–35

    Article  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Brennan JM, Bender DJ, Contreras TA, Fahrig L (2002) Focal patch landscape studies for wildlife management: optimizing sampling effort across scales. In: Liu J, Taylor WW (eds) Integrating landscape ecology into natural resource management. Cambridge University Press, Cambridge, pp 68–91

    Chapter  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Chamaillé-Jammes S, Charbonnel A, Dray S, Madzikanda H, Fritz H (2016) Spatial distribution of a large herbivore community at waterholes: an assessment of its stability over years in Hwange National Park, Zimbabwe. PLoS ONE 11:e0153639

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplin-Kramer R, de Valpine P, Mills NJ, Kremen C (2013) Detecting pest control services across spatial and temporal scales. Agric Ecosyst Environ 181:206–212

    Article  Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL, Pedro HS, Brancalion LL, Bennett-Curry A, Buckingham K, Kumar C, Moll-Rocek J, Vieira ICG, Wilson SJ (2016) When is a forest a forest? Forest concepts and definitions in the Era of forest and landscape restoration. Ambio 45:538–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiarello AG (2000) Density and populations size of mammals in remnants of Brazilian Atlantic Forest. Conserv Biol 14:1649–1657

    Article  Google Scholar 

  • Cid B, Oliveira-Santos LGR, Mourão G (2013) Seasonal habitat use of Agoutis (Dasyprocta azarae) is driven by the palm Attalea Phalerata in Brazilian Pantanal. Biotropica 45:380–385

    Article  Google Scholar 

  • Comber A, Fisher P, Wadsworth R (2005) You know what land cover is but does anyone else?… an investigation into semantic and ontological confusion. Int J Remote Sens 26:223–228

    Article  Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868

    Article  CAS  PubMed  Google Scholar 

  • Crouzeilles R, Curran M (2016) Which landscape size best predicts the influence of forest cover on restoration success? A global meta-analysis on the scale of effect. J Appl Ecol 53:440–448

    Article  Google Scholar 

  • Danell K, Bergström R, Duncan P, Pastor J (2006) Large herbivore ecology, ecosystem dynamics and conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Defries RS, Hansen MC, Townshend JRG, Janetos AC, Loveland TR (2001) A new global 1-km dataset of percentage tree cover derived from remote sensing. Global Change Biol 6:247–254

    Article  Google Scholar 

  • Delsol R, Loreau M, Haegeman B (2018) The relationship between the spatial scaling of biodiversity and ecosystem stability. Glob Ecol Biogeogr 27:439–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte JMB, Vogliotti A, Zanetti EV, Oliveira ML, Tiepolo LM, Rodrigues LF, Almeida LB (2012) Avaliação do risco de extinção do veado-catingueiro Mazama gouazoubira G. Fischer [von Waldheim], 1814, no Brasil. Biodiversi Brasil 3:50–58

    Google Scholar 

  • Emmons L, Feer F (1997) Neotropical rainforest mammals: a field guide. University of Chicago Press, Chicago, Illinois, USA, p 396p

    Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Ferreguetti AC, Tomas WM, Fergallo HG (2017) Differences in the mammalian habitat use in a mosaic of vegetation types of an Atlantic rain-forest Reserve, Brazil. Mastozool Neotrop 24:355–364

    Google Scholar 

  • Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23

    Article  Google Scholar 

  • Fortin D, Courtois R, Etcheverry P, Dussault C, Gingras A (2008) Winter selection of landscapes by woodland caribou: behavioural response to geographical gradients in habitat attributes. J Appl Ecol 45:1392–1400

    Article  Google Scholar 

  • Fragoso JMS (1998) Home range and movement patterns of white-lipped Peccary (Tayassu pecari) Herds in the Northern Brazilian Amazon. Biotropica 30:458–469

    Article  Google Scholar 

  • Fryxell JM, Hazell M, Börger L, Dalziel BD, Haydon DT, Morales JM, McIntosh T, Rosatte RC (2008) Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc Natl Acad Sci USA 105:19114–19119

    Article  CAS  PubMed  Google Scholar 

  • Gabriel D, Sait SM, Hodgson JA, Schmutz U, Kunin WE, Benton TG (2010) Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol Lett 13:858–869

    Article  PubMed  Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41:2027–2037

    Article  Google Scholar 

  • Haines-Young R (2009) Land use and biodiversity relationships. Land Use Policy 26:178–186

    Article  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci USA 107:8650–8655

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21 st-century forest cover change. Science 342:850–853

    Article  CAS  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    Article  CAS  PubMed  Google Scholar 

  • Holland J, Yang S (2016) Multi-scale studies and the ecological neighbourhood. Curr Landsc Ecol Rep 1:135–145

    Article  Google Scholar 

  • Holland J, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. Bioscience 54:227–233

    Article  Google Scholar 

  • Huais PY (2018) Multifit: an R function for multi-scale analysis in landscape ecology. Landsc Ecol 33:1023–1028

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Jansen PA, Hirsch BT, Emsens W-J, Zamora-Gutierrez V, Wikelski M, Kays R (2012) Thieving rodents as substitute dispersers of megafaunal seeds. Proc Natl Acad Sci USA 109:12610–12615

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Article  Google Scholar 

  • Judas J, Henry O (1999) Seasonal variation of home range of collared peccary in tropical rain forest of French Guiana. J Wildl Manag 63:546–552

    Article  Google Scholar 

  • Keuroghlian A, Eaton DP, Longland WS (2004) Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biol Conserv 120:411–425

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in Ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Lidicker WZ Jr (1999) Responses of mammals to habitat edges: a landscape perspective. Landsc Ecol 14:331

    Article  Google Scholar 

  • Lowicki D (2017) Landscape metrics as an indicators of landscape value. Probl Landsc Ecol 44:99–108

    Google Scholar 

  • Lü Y, Feng X, Chen L, Fu B (2013) Scaling effects of landscape metrics: a comparison of two methods. Phys Geog 34:40–49

    Article  Google Scholar 

  • Mares MA, Ernest KA, Gettinger RD (1986) Small mammal community structure and composition in the Cerrado province of Central Brazil. J Trop Ecol 2:289–300

    Article  Google Scholar 

  • Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111

    Article  PubMed  Google Scholar 

  • Martin AE, Farhig L (2012) Measuring and selecting scales o effect for landscape predictors in species-habitat models. Ecol Appl 22:2277–2292

    Article  PubMed  Google Scholar 

  • Martínez-Ruiz M, Arroyo-Rodríguez V, Franch-Pardo I, Renton K (2020) Patterns and drivers of the scale of effect of landscape structure on diurnal raptors in a fragmented tropical dry forest. Landsc Ecol 35:1309–1322

    Article  Google Scholar 

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247

    Article  Google Scholar 

  • Melo GL, Sponchiado J, Cáceres N, Fahrig L (2017) Testing the habitat amount hypothesis for South American small mammals. Biol Conser 209:304–314

    Article  Google Scholar 

  • Michalski F, Peres CA (2007) Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv Biol 21:1626–1640

    PubMed  Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194

    Article  Google Scholar 

  • Miguet P, Fahrig L, Lavigne C (2017) How to quantify a distance-dependent landscape effect on a biological response. Methods Ecol Evol 8:1717–1724

    Article  Google Scholar 

  • Moraga AD, Martin AE, Fahrig L (2019) The scale of effect of landscape context varies with the species’ response variable measured. Landsc Ecol 34:703–715

    Article  Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol 19:435–455

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria- Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Niedballa J, Sollmann R, bin Mohamed A, Bender J (2015) Defining habitat covariates in camera-trap based occupancy studies. Sci Rep 5:17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Quintero JM, Gardner TA, Rosa I, de Barros Ferraz SF, Sutherland WJ (2015) Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv Biol 29:440–451

    Article  PubMed  Google Scholar 

  • Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, p 373p

    Google Scholar 

  • Pardini R, de Buen AA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires AS, Lira PK, Fernandez FAS, Schittini GM, Oliveira LC (2002) Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol Conserv 108:229–237

    Article  Google Scholar 

  • Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller M, Maurenza D, Alves-Pinto H, Pardini R, Vieira MV, Banks-Leite G, Fonseca CR, Metzger JP, Accacio GM, Alexandrino AR, Barros CS, Bogoni JA, Boscolo D, Brancalion PHS, Bueno AA, Cambui ECB, Canale GR, Cerqueira R, Cesar RG, Colletta GD, Delciellos AC, Dixo M, Estavillo C, Esteves CS, Falcão F, Farah FT, Faria D, Ferraz KMPMB, Ferraz SFB, Ferreira PA, Graipel ME, Grelle CEV, Hernández MIM, Ivanauskas N, Laps RR, Leal IR, Lima MM, Lion MB, Magioli M, Magnago LFS, Mangueira JRAS, Marciano-Jr E, Mariano-Netor E, Marques MCM, Martins SV, Matos MA, Matos FAR, Miachir JI, Morante-Filho JM, Olifiers N, Oliveira-Santos LGR, Paciencia MLB, Paglia AP, Passamani M, Peres CA, Pinto Leite CM, Porto TJ, Querido LCA, Reis LC, Rezende AA, Rigueira DMG, Rocha PLB, Rocha-Santos L, Rodrigues RR, Santos RAS, Santos JS, Silveira MS, Simonelli M, Tabarelli M, Vasconcelos RN, Viana BF, Emerson MV, Prevedello JA (2020) Indirect effects of habitat loss via habitat fragmentation: Across-taxa analysis of forest-dependent species. Biol Conser 241:108368

    Article  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rausch LL, Gibbs HK, Schelly I, Brandão A, Morton DC, Filho AC, Strassburg B, Walker N, Noojipady P, Barreto P, Meyer D (2019) Soy expansion in Brazil’s Cerrado. Conserv Lett 12:e12671

    Article  Google Scholar 

  • R Development Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing

  • Redon M, Bergès TC, Luque S (2014) Effects of increasing landscape heterogeneity on local plant species richness: how much is enough? Landsc Ecol 29:773–787

    Article  Google Scholar 

  • Regolin AL, Cherem JJ, Graipel ME, Bogoni JA, Ribeiro JW, Vancine MH, Tortato MA, Oliveira-Santos LG, Fantacini FM, Luiz MR, de Castilho PV, Ribeiro MC, Cáceres NC (2017) Forest cover influences occurrence of mammalian carnivores within Brazilian Atlantic Forest. J Mammal 98:1721–1731

    Article  Google Scholar 

  • Rocchini D, Foody GM, Nagendra H, Ricotta C, Anand M, He KS, Amici V, Kleinschmit B, Förster M, Schmidtlein S, Feilhauer H, Ghisla A, Metz M, Neteler M (2013) Uncertainty in ecosystem mapping by remote sensing. Comput Geosci 50:128–135

    Article  Google Scholar 

  • Royo AA, Carson WP (2005) The herb community of a tropical forest in central Panamá: dynamics and impact of mammalian herbivores. Oecologia 145:66–75

    Article  PubMed  Google Scholar 

  • Saab V (1999) Importance of spatial scale to habitat use by breeding birds in riparian forests: a hierarchical analysis. Ecol Appl 9:135–151

    Article  Google Scholar 

  • San-José M, Arroyo-Rodríguez V, Jordano P, Meave JA, Martínez-Ramos M (2019) The scale of landscape effect on seed dispersal depends on both response variables and landscape predictor. Landsc Ecol 34:1069–1080

    Article  Google Scholar 

  • Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, Latawiec AE, Oliveira Filho FJB, Scaramuzza CAM, Scarano FR, Soares-Filho B, Balmford A (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:99

    Article  PubMed  Google Scholar 

  • Stuber EF, Gruber LF (2020) Recent methodological solutions to identifying scales of effect in multi-scale modelling. Curr Landsc Ecol Rep 5:127–139

    Article  Google Scholar 

  • TEAM Network (2019) Terrestrial Vertebrate Monitoring Protocol. v 3.1. TEAM Standardized Monitoring Protocols

  • Teixeira-Santos J, Ribeiro ACdC, Wiig Ø, Pinto NS, Cantanhêde LG, Sena L, Mendes-Oliveira AC (2020) Environmental factors influencing the abundance of four species of threatened mammals in degraded habitats in the eastern Brazilian Amazon. PLoS ONE 15:e0229459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton DH, Fletcher RJ (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography 37:454–463

    Google Scholar 

  • Vanderwal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) Package ‘SDMTools’. Species Distribution ModellingTools: Tools for processing data associated with species distribution modelling exercises. R-package version 1.1.12

  • Young HS, McCauley DJ, Helgen KM, Goheen JR, Otárola-Castillo E, Palmer TM, Pringle RM, Young TP, Dirzo R (2013) Effects of mammalian herbivore declines on plant communities: observations and experiments in an African savanna. J Ecol 101:1030–1041

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimbres B, Peres CA, Penido G, Machado RB (2018) Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier. Biodivers Conserv 27:2815–2836

    Article  Google Scholar 

  • Zuckerberg B, Desrochers A, Hochachka WM, Fink D, KoenigWD DJL (2012) Overlapping landscapes: a persistent, but misdirected concern when collecting and analyzing ecological data. J Wildl Manag 76:1072–1080

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) COFECUB (Comité Français d’Évaluation de la Coopération Universitaire et Scientifique and Campus France) grant (French number: Sv 875-17 and Brazilian Process: 23038.001818/2020-70), the Institutional Program of Internationalization sponsored by the CAPES (Finance Code 001; Capes-PrInt 41/2017-Process: 88881.311897/2018-01), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Process: 301306/2018-4) and the Pesquisa Ecológica de Longa Duração (PELD/ILTER) Planalto da Bodoquena and the University of Angers (FragHerb project). We would like to thank the Programa de Pós Graduação em Ecologia e Conservação (PPGEC) of the Universidade Federal de Mato Grosso do Sul (UFMS), the CAPES, the COFECUB, Campus France, the Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT) for their institutional supports and Jacques Baudry for his helpful comments. Finally, we thank two anonymous referees and Marisela Martínez-Ruiz for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pays.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3319 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiot, C., Santos, C.C., Arvor, D. et al. The scale of effect depends on operational definition of forest cover—evidence from terrestrial mammals of the Brazilian savanna. Landscape Ecol 36, 973–987 (2021). https://doi.org/10.1007/s10980-021-01196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01196-9

Keywords

Navigation