Skip to main content
Log in

CoFe2O4@Methylcelloluse as a New Magnetic Nano Biocomposite for Sonocatalytic Degradation of Reactive Blue 19

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Reactive Blue 19 (RB19) removal from synthetic textile wastewater was investigated by using a CoFe2O4@methylcellulose (MC) activated with peroxymonosulfate (PMS) and the ultrasound process. CoFe2O4@MC as a new magnetic nano-biocomposite was prepared using a convenient and rapid microwave-assisted technique in presence of MC as a green biopolymer, and characterized by FESEM, EDS, Mapping, TEM, FTIR, XRD, TGA, VSM, and BET techniques. Then, the effective parameters including pH (4–10), reaction time (0–30 min), CoFe2O4@MC (0.2–1 g/L), and PMS concentration (0.5–10 mM) in the sonocatalytic degradation of RB19 were investigated. The maximum removal efficiency of RB19 was achieved as 97% for synthetic wastewater under the optimal conditions of pH 4, CoFe2O4@MC dosage (0.6 g/L), reaction time = 30 min, and PMS (5 mM) in the presence of ultrasonic waves (60 kHz) at the ambient room temperature of 22 °C. The CoFe2O4@MC catalyst was simply isolated using a magnet and recycled with no remarkable loss of catalytic activity following usage in four runs. The results showed that the CoFe2O4@MC sonocatalysis process is practical, and effective for degrading complex and resistant dyes such as RB19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Daneshvar N, Aber S, Vatanpour V, Rasoulifard MH (2008) Electro-Fenton treatment of dye solution containing Orange II: influence of operational parameters. J Electroanal Chem 615(2):165–174

    Article  CAS  Google Scholar 

  2. Al-Kdasi A, Idris A, Saed K, Guan CT (2004) Treatment of textile wastewater by advanced oxidation processes—a review. Glob nest Int J 6(3):222–230

    Google Scholar 

  3. Kurt U, Apaydin O, Gonullu MT (2007) Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. J Hazard Mater 143(1–2):33–40

    Article  CAS  PubMed  Google Scholar 

  4. Alinsafi A, Khemis M, Pons M-N, Leclerc J-P, Yaacoubi A, Benhammou A et al (2005) Electro-coagulation of reactive textile dyes and textile wastewater. Chem Eng Process Process Intensif 44(4):461–470

    Article  CAS  Google Scholar 

  5. Bellakhal N, Dachraoui M, Oturan N, Oturan MA (2006) Degradation of tartrazine in water by electro-Fenton process. J-Soc Chim Tunisie 8(2):223

    CAS  Google Scholar 

  6. Ventura A, Jacquet G, Bermond A, Camel V (2002) Electrochemical generation of the Fenton’s reagent: application to atrazine degradation. Water Res 36(14):3517–3522

    Article  CAS  PubMed  Google Scholar 

  7. Oturan MA, Sirés I, Oturan N, Pérocheau S, Laborde J-L, Trévin S (2008) Sonoelectro-Fenton process: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624(1–2):329–332

    Article  CAS  Google Scholar 

  8. Hammami S, Oturan N, Bellakhal N, Dachraoui M, Oturan MA (2007) Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology. J Electroanal Chem 610(1):75–84

    Article  CAS  Google Scholar 

  9. Amirmahani N, Mahdizadeh H, Malakootian M, Pardakhty A, Mahmoodi NO (2020) Evaluating nanoparticles decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in adsorption of ciprofloxacin from aqueous environments. J Inorg Organomet Polym Mater [Internet] 30(9):3540–3551

    Article  CAS  Google Scholar 

  10. Malakootian M, Nasiri A, Mahdizadeh H (2019) Metronidazole adsorption on CoFe2O4/activated carbon@chitosan as a new magnetic biocomposite: modelling, analysis, and optimization by response surface methodology. Desalin Water Treat [Internet] 164:215–227

    Article  CAS  Google Scholar 

  11. Javid N, Nasiri A, Malakootian M (2019) Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles. Desalin Water Treat 141:140–148

    Article  CAS  Google Scholar 

  12. Chiou C-S, Chang C-F, Chang C-T, Shie J-L, Chen Y-H (2006) Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere 62(5):788–795

    Article  CAS  PubMed  Google Scholar 

  13. Mahdizadeh H, Nasiri A, Gharaghani MA, Yazdanpanah G (2020) Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye. MethodsX 7:101118

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malakootian M, Smith AJ, Gharaghani MA, Mahdizadeh H, Nasiri A, Yazdanpanah G (2020) Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface. Desalin Water Treat [Internet] 182:385–394

    Article  CAS  Google Scholar 

  15. Rajabizadeh K, Yazdanpanah G, Dowlatshahi S, Malakootian M (2020) Photooxidation process efficiency (UV/O3) for P-nitroaniline removal from aqueous solutions. Ozone Sci Eng [Internet] 42(5):420–427

    Article  CAS  Google Scholar 

  16. Malakootiana M, Asadzadehc SN (2020) Oxidative removal of tetracycline by sono Fenton-like oxidation process in aqueous media. Desalin Water Treat 193:392–401

    Article  Google Scholar 

  17. Malakootian M, Asadzadeh SN (2020) Removal of tetracycline from aqueous solution by ultrasound and ultraviolet enhanced persulfate oxidation. Desalin Water Treat 197:191–199

    Article  CAS  Google Scholar 

  18. Malakootian M, Khatami M, Ahmadian M, Asadzadeh SN (2019) Biogenic silver nanoparticles/hydrogen peroxide/ozone: efficient degradation of reactive blue 19. Bionanoscience 1–8.

  19. Malakootian M, Kannan K, Gharaghani MA, Dehdarirad A, Nasiri A, Shahamat YD et al (2019) Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J Environ Chem Eng 7(6):103457

    Article  CAS  Google Scholar 

  20. Malakootian M, Nasiri A, Asadipour A, Faraji M, Kargar E (2019) A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media. MethodsX [Internet] 6:1575–1580

    Article  Google Scholar 

  21. Tamaddon F, Nasiri A, Yazdanpanah G (2020) Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX [Internet] 7:74–81

    Google Scholar 

  22. Malakootian M, Khatami M, Mahdizadeh H, Nasiri A, Amiri GM (2020) A study on the photocatalytic degradation of p-nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle. Inorg Nano-Metal Chem [Internet] 50(3):124–135

    Article  CAS  Google Scholar 

  23. Jangam K, Patil K, Balgude S, Patange S, More P (2020) Synthesis and characterization of magnetically separable Zn1-xCoxFeMnO4 nanoferrites as highly efficient photocatalyst for degradation of dye under solar light irradiation. J Phys Chem Solids 148:109700

    Article  Google Scholar 

  24. Jangam K, Patil K, Balgude S, Patange S, More P (2020) Magnetically separable Zn1–xCo0.5xMg0.5xFe2O4 ferrites: stable and efficient sunlight-driven photocatalyst for environmental remediation. RSC Adv 10(70):42766–76

    Article  CAS  Google Scholar 

  25. Oh W-D, Dong Z, Lim T-T (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl Catal B Environ 194:169–201

    Article  CAS  Google Scholar 

  26. Feng M, Cizmas L, Wang Z, Sharma VK (2017) Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate (VI). Chemosphere 177:144–148

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Wang Y, Wang Q, Pan J, Zhang J (2018) Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere 190:431–441

    Article  CAS  PubMed  Google Scholar 

  28. Yin R, Guo W, Wang H, Du J, Zhou X, Wu Q et al (2018) Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms. Chem Eng J 335:145–153

    Article  CAS  Google Scholar 

  29. Sharma J, Mishra IM, Dionysiou DD, Kumar V (2015) Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway. Chem Eng J 276:193–204

    Article  CAS  Google Scholar 

  30. Ren Y, Lin L, Ma J, Yang J, Feng J, Fan Z (2015) Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M= Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B Environ 165:572–578

    Article  CAS  Google Scholar 

  31. Lashkaryani EB, Kakavandi B, Kalantary RR, Jafari AJ, Gholami M (2019) Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe2O4@ Gr). Toxin Rev 1–10

  32. Li J, Xu M, Yao G, Lai B (2018) Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem Eng J 348:1012–1024

    Article  CAS  Google Scholar 

  33. Heidari MR, Varma RS, Ahmadian M, Pourkhosravani M, Asadzadeh SN, Karimi P et al (2019) Photo-fenton like catalyst system: activated carbon/CoFe2O4 nanocomposite for reactive dye removal from textile wastewater. Appl Sci 9(5):963

    Article  CAS  Google Scholar 

  34. Tan C, Gao N, Fu D, Deng J, Deng L (2017) Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Sep Purif Technol 175:47–57

    Article  CAS  Google Scholar 

  35. Liu Z, Yang S, Yuan Y, Xu J, Zhu Y, Li J et al (2017) A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface. J Hazard Mater 324:583–592

    Article  CAS  PubMed  Google Scholar 

  36. Farhadi S, Siadatnasab F, Khataee A (2017) Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ ZnS core-shell nanocomposite. Ultrason Sonochem 37:298–309

    Article  CAS  PubMed  Google Scholar 

  37. Siadatnasab F, Farhadi S, Khataee A (2018) Sonocatalytic performance of magnetically separable CuS/CoFe2O4 nanohybrid for efficient degradation of organic dyes. Ultrason Sonochem 44:359–367

    Article  CAS  PubMed  Google Scholar 

  38. Baird RB, Eaton AD, Rice EW, Bridgewater L (2017) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  39. Ahmadi S, Mohammadi L, Igwegbe CA, Rahdar S, Banach AM (2018) Application of response surface methodology in the degradation of Reactive Blue 19 using H2O2/MgO nanoparticles advanced oxidation process. Int J Ind Chem 9(3):241–253

    Article  CAS  Google Scholar 

  40. Amirmahani N, Rashidi M, Mahmoodi NO (2020) Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 34(5):e5626

    Article  CAS  Google Scholar 

  41. Nguyen VA, Ramanathan M (2020) Application of Brunauer–Emmett–Teller (BET) theory and the Guggenheim–Anderson–de Boer (GAB) equation for concentration-dependent, non-saturable cell–cell interaction dose-responses. J Pharmacokinet Pharmacodyn [Internet] 47(6):561–572

    Article  CAS  Google Scholar 

  42. Li X, Wang Z, Zhang B, Rykov AI, Ahmed MA, Wang J (2016) FexCo3−xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate. Appl Catal B Environ 181:788–799

    Article  CAS  Google Scholar 

  43. Antoniou MG, Armah A, Dionysiou DD (2010) Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e-transfer mechanisms. Appl Catal B Environ 96(3–4):290–298

    Article  CAS  Google Scholar 

  44. Gong C, Chen F, Yang Q, Luo K, Yao F, Wang S et al (2017) Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B. Chem Eng J 321:222–232

    Article  CAS  Google Scholar 

  45. Deng J, Shao Y, Gao N, Tan C, Zhou S, Hu X (2013) CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J Hazard Mater 262:836–844

    Article  CAS  PubMed  Google Scholar 

  46. Xie M, Tang J, Kong L, Lu W, Natarajan V, Zhu F et al (2019) Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation. Chem Eng J 360:1213–1222

    Article  CAS  Google Scholar 

  47. Tan C, Gao N, Deng Y, Deng J, Zhou S, Li J et al (2014) Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J Hazard Mater 276:452–460

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Shao Y, Gao N, Chu W, Chen J, Lu X et al (2017) Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: kinetics and mechanism. Sep Purif Technol 189:176–185

    Article  CAS  Google Scholar 

  49. Yao Y, Xu C, Yu S, Zhang D, Wang S (2013) Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decomposition of aqueous organics. Ind Eng Chem Res. 52(10):3637–45

    Article  CAS  Google Scholar 

  50. Zhang B, Zhang Y, Xiang W, Teng Y, Wang Y (2017) Comparison of the catalytic performances of different commercial cobalt oxides for peroxymonosulfate activation during dye degradation. Chem Res Chin Univ 33(5):822–827

    Article  CAS  Google Scholar 

  51. Du Y, Ma W, Liu P, Zou B, Ma J (2016) Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants. J Hazard Mater 308:58–66

    Article  CAS  PubMed  Google Scholar 

  52. Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, Metin Ö (2018) Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem 40:841–852

    Article  CAS  PubMed  Google Scholar 

  53. Khan MA, Alam MM, Naushad M, Alothman ZA, Kumar M, Ahamad T (2015) Sol–gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: an ecofriendly and economical approach. Chem Eng J 279:416–424

    Article  CAS  Google Scholar 

  54. Li X, Lu H, Zhang Y, He F (2017) Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J 316:893–902

    Article  CAS  Google Scholar 

  55. Ahmadi M, Ghanbari F (2018) Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater. Environ Sci Pollut Res 25(6):6003–6014

    Article  CAS  Google Scholar 

  56. Oh W-D, Dong Z, Hu Z-T, Lim T-T (2015) A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation. J Mater Chem A 3(44):22208–22217

    Article  CAS  Google Scholar 

  57. Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249

    Article  CAS  Google Scholar 

  58. Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40(3):1000–7

    Article  CAS  PubMed  Google Scholar 

  59. Anipsitakis GP, Dionysiou DD (2004) Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B Environ 54(3):155–163

    Article  CAS  Google Scholar 

  60. Xu LJ, Chu W, Gan L (2015) Environmental application of graphene-based CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer. Chem Eng J 263:435–443

    Article  CAS  Google Scholar 

  61. Gupta VK, Fakhri A, Azad M, Agarwal S (2017) Synthesis of CdSe quantum dots decorated SnO2 nanotubes as anode for photo-assisted electrochemical degradation of hydrochlorothiazide: Kinetic process. J Colloid Interface Sci 508:575–582

    Article  CAS  PubMed  Google Scholar 

  62. Hu L, Zhang G, Liu M, Wang Q, Wang P (2018) Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology. Chemosphere 212:152–161

    Article  CAS  PubMed  Google Scholar 

  63. Kamal S, Pan G-T, Chong S, Yang TC-K (2020) Ultrasonically induced sulfur-doped carbon nitride/cobalt ferrite nanocomposite for efficient sonocatalytic removal of organic dyes. Processes. 8(1):104

    Article  CAS  Google Scholar 

  64. Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40(1):55–91

    Article  CAS  Google Scholar 

  65. Guan Y-H, Ma J, Ren Y-M, Liu Y-L, Xiao J-Y, Lin L et al (2013) Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res 47(14):5431–5438

    Article  CAS  PubMed  Google Scholar 

  66. Siddique M, Farooq R, Shaheen A (2011) Removal of Reactive Blue 19 from wastewaters by physicochemical and biological processes-a review. J Chem Soc Pakistan 33(2):284–285

    CAS  Google Scholar 

  67. Esmaeili S, Dehvari M, Babaei A (2019) Degradation of acid orange 7 dye with PMS and H2O2 activated by CoFe2O4/PAC nanocomposite. Arch Hyg Sci 8(1):35–45

    Article  CAS  Google Scholar 

  68. Parhizkar J, Habibi MH, Mosavian SY (2019) Synthesis and characterization of nano CoFe2O4 prepared by sol-gel auto-combustion with ultrasonic irradiation and evaluation of photocatalytic removal and degradation kinetic of reactive red 195. Silicon 11(2):1119–1129

    Article  CAS  Google Scholar 

  69. Huang Y, Wang Y, Meng X, Liu X (2020) Highly efficient Co-OMS-2 catalyst for the degradation of reactive blue 19 in aqueous solution. Inorg Chem Commun 112:107757

    Article  Google Scholar 

  70. Singh P, Vishnu MC, Sharma KK, Singh R, Madhav S, Tiwary D et al (2016) Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and photosonocatalytic reactor. Desalin Water Treat 57(43):20552–20564

    Article  CAS  Google Scholar 

  71. Kaur S, Singh V (2007) Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 14(5):531–537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research with Project Number 98000528 and IR.KMU.REC.1398.507 ethic approval cod was conducted in the Student Research Committee of Kerman University of Medical Sciences. This research was supported by the Vice-Chancellor for Research and Technology of Kerman University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Nastaran Asadzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, A., Malakootian, M., Heidari, M.R. et al. CoFe2O4@Methylcelloluse as a New Magnetic Nano Biocomposite for Sonocatalytic Degradation of Reactive Blue 19. J Polym Environ 29, 2660–2675 (2021). https://doi.org/10.1007/s10924-021-02074-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02074-w

Keywords

Navigation