Skip to main content
Log in

Poly(2-ethyl-2-oxazoline) as β-Nucleating Agent for Poly(lactic acid) Blends with High Transparency and Hydrophilicity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of poly(2-ethyl-oxazoline) (PEOx) on the thermal properties, wettability, and optical properties of poly(lactic acid) (PLA). The PLA/PEOx blends (PEOx loading: 5 to 20 wt%) were prepared using the solvent casting method. Good interaction between PLA and PEOx was confirmed by Fourier transform infrared spectroscopy (FTIR) and work of adhesion (determined from dynamic contact angle). The transparency of PLA was improved by the addition of PEOx. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results proved that the PEOx induces the β-crystals formation of PLA. The higher the loading of PEOx is, the higher the intensity of the β-crystals formation. The transparent PLA/PEOx blends are suitable for packaging applications (both non-food and food packaging).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Niaounakis M (2019) Recycling of biopolymers—the patent perspective. Eur Polym J 114:464–475. https://doi.org/10.1016/j.eurpolymj.2019.02.027

    Article  CAS  Google Scholar 

  2. Chen GQ, Martin KP (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099. https://doi.org/10.1021/cr200162d

    Article  CAS  PubMed  Google Scholar 

  3. Ruggero F, Gori R, Lubello C (2019) Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag Res 37:959–975. https://doi.org/10.1177/0734242X19854127

    Article  CAS  PubMed  Google Scholar 

  4. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366. https://doi.org/10.1016/j.addr.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  5. Aamer AS, Fariha H, Abdul H et al (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  6. Jamshidian M, Tehrany EA, Imran M et al (2010) Polylactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  CAS  PubMed  Google Scholar 

  7. Tham WL, Poh BT, Mohd Ishak ZA et al (2014) Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. J Therm Anal Calorim 118:1639–1647. https://doi.org/10.1007/s10973-014-4062-2

    Article  CAS  Google Scholar 

  8. Nofar M, Sacligil D, Carreau PJ et al (2019) Poly(lactic acid) blends: processing, properties and applications. Int J Biol Macromol 125:307–360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Wu Y, Li YD et al (2017) Progress in toughening poly(lactic acid) with renewable polymers. Polym Rev 57:557–593. https://doi.org/10.1080/15583724.2017.1287726

    Article  CAS  Google Scholar 

  10. Jin FL, Hu RR, Park SJ (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos B Eng 164:287–296. https://doi.org/10.1016/j.compositesb.2018.10.078

    Article  CAS  Google Scholar 

  11. Saeidlou S, Huneault MA, Li H et al (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  12. Kaseem M, Ko YG (2017) Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends. J Polym Environ 25:994–998. https://doi.org/10.1007/s10924-016-0873-5

    Article  CAS  Google Scholar 

  13. Leu YY, Chow WS (2011) Kinetics of water absorption and thermal properties of poly(lactic acid)/organomontmorillonite/poly(ethylene glycol) nanocomposites. J Vinyl Addit Technol 17:40–47. https://doi.org/10.1002/vnl.20259

    Article  CAS  Google Scholar 

  14. Zhou H, Zhao M, Qu Z et al (2018) Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior. J Polym Environ 26:3564–3573. https://doi.org/10.1007/s10924-018-1240-5

    Article  CAS  Google Scholar 

  15. Jia W, Gong RH, Soutis C, Hogg PJ (2014) Biodegradable fibre reinforced composites composed of polylactic acid and polybutylene succinate. Plast, Rubber Compos 43:82–88. https://doi.org/10.1179/1743289813Y.0000000070

    Article  CAS  Google Scholar 

  16. Iglesias Montes ML, D’amico DA, Manfredi LB, Cyras VP (2019) Effect of natural glyceryl tributyrate as plasticizer and compatibilizer on the performance of bio-based polylactic acid/poly(3-hydroxybutyrate) blends. J Polym Environ 27:1429–1438. https://doi.org/10.1007/s10924-019-01425-y

    Article  CAS  Google Scholar 

  17. Torres-Huerta AM, Palma-Ramírez D, Domínguez-Crespo MA et al (2014) Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. Eur Polym J 61:285–299. https://doi.org/10.1016/j.eurpolymj.2014.10.016

    Article  CAS  Google Scholar 

  18. Samthong C, Deetuam C, Yamaguchi M et al (2016) Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends. Polym Eng Sci 56:258–268. https://doi.org/10.1002/pen.24246

    Article  CAS  Google Scholar 

  19. Teoh EL, Chow WS (2017) Transparency, ultraviolet transmittance, and miscibility of poly(lactic acid)/poly(methyl methacrylate) blends. J Elastomers Plast 50:596–610. https://doi.org/10.1177/0095244317743067

    Article  Google Scholar 

  20. Qu Z, Yin D, Zhou H, Wang X, Zhao S (2019) Cellular morphology evolution in nanocellular poly (lactic acid)/thermoplastic polyurethane blending foams in the presence of supercritical N2. Eur Polym J 116:291–301. https://doi.org/10.1016/j.eurpolymj.2019.03.046

    Article  CAS  Google Scholar 

  21. Lu X, Huang J, Kang B, Yuan T, Qu J (2019) Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications. Sol Energy Mater Sol Cells 192:170–178. https://doi.org/10.1016/j.solmat.2018.12.036

    Article  CAS  Google Scholar 

  22. Zhao M, Ding X, Mi J, Zhou H, Wang X (2017) Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polym Degrad Stab 146:277–286. https://doi.org/10.1016/j.polymdegradstab.2017.11.003

    Article  CAS  Google Scholar 

  23. Jašo V, Glenn G, Artur Klamczynski, Petrović ZS (2015) Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym Test 47:1–3. https://doi.org/10.1016/j.polymertesting.2015.07.011

    Article  CAS  Google Scholar 

  24. Cocca M, Androsch R, Righetti MC, Malinconico M, Lorenzo MLD (2014) Conformationally disordered crystals and their influence on material properties: the cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J Mol Struct 1078:114–132. https://doi.org/10.1016/j.molstruc.2014.02.038

    Article  CAS  Google Scholar 

  25. Xu R, Xie J, Lei C (2017) Influence of melt-draw ratio on the crystalline behaviour of a polylactic acid cast film with a chi structure. RSC Adv 7:39914–39921. https://doi.org/10.1039/c7ra05422j

    Article  CAS  Google Scholar 

  26. Singh NK, Singh SK, Dash D, Gonugunta P, Misra M, Maiti P (2013) CNT induced β-phase in polylactide: unique crystallization, biodegradation, and biocompatibility. J Phys Chem C 117:10163–10174. https://doi.org/10.1021/jp4009042

    Article  CAS  Google Scholar 

  27. Su L, Zou J, Dong S, Hao N, Xu H (2017) Influence of different β-nucleation agents on poly(l-lactic acid): structure, morphology, and dynamic mechanical behavior. RSC Adv 7:55364–55370. https://doi.org/10.1039/C7RA10550A

    Article  CAS  Google Scholar 

  28. Saha D, Samal SK, Biswal M, Mohanty S, Nayak SK (2019) Preparation and characterization of poly(lactic acid)/poly(ethylene oxide) blend film: effects of poly(ethylene oxide) and poly(ethylene glycol) on the properties. Polym Int 68:164–172. https://doi.org/10.1002/pi.5718

    Article  CAS  Google Scholar 

  29. Isasi JR, Meaurio E, Cesteros C et al (1996) Miscibility and specific interactions in blends of poly(2-ethyl-2-oxazoline) with hydroxylated polymethacrylates. Macromol Chem Phys 197:641–649. https://doi.org/10.1002/macp.1996.021970219

    Article  CAS  Google Scholar 

  30. Maldonado-Santoyo M, Ortíz-Estrada C, Luna-Bárcenas G et al (2014) Miscibility behavior and hydrogen bonding in blends of poly(vinyl phenyl ketone hydrogenated) and poly(2-ethyl-2-oxazoline). J Polym Sci, Part B: Polym Phys 42:636–645. https://doi.org/10.1002/polb.10758

    Article  CAS  Google Scholar 

  31. Zhang C, Liu S, Tan L et al (2015) Star-shaped poly(2-methyl-2-oxazoline)-based films: rapid preparation and effects of polymer architecture on antifouling properties. J Mater Chem B 3:5615–5628. https://doi.org/10.1039/C5TB00732A

    Article  CAS  PubMed  Google Scholar 

  32. Schneider M, Tang Z, Richter M et al (2016) Patterned polypeptoid brushes. Macromol Biosci 16:75–81. https://doi.org/10.1002/mabi.201500314

    Article  CAS  PubMed  Google Scholar 

  33. Popelka A, Kronek J, Novák I et al (2014) Surface modification of low-density polyethylene with poly(2-ethyl-2-oxazoline) using a low-pressure plasma treatment. Vacuum 100:53–56. https://doi.org/10.1016/j.vacuum.2013.07.016

    Article  CAS  Google Scholar 

  34. Li D, Neumann AW (1992) Equation of state for interfacial tensions of solid-liquid systems. Adv Colloid Interface Sci 39:299–345. https://doi.org/10.1016/0001-8686(92)80064-5

    Article  CAS  Google Scholar 

  35. Roura P, Fort J (2004) Local thermodynamic derivation of Young’s equation. J Colloid Interface Sci 272:420–429. https://doi.org/10.1016/j.jcis.2004.01.028

    Article  CAS  PubMed  Google Scholar 

  36. Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51:1954–1963. https://doi.org/10.1016/j.polymer.2010.03.013

    Article  CAS  Google Scholar 

  37. Chapple S, Anandjiwala R, Ray SS (2013) Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. J Therm Anal Calorim 113:703–712. https://doi.org/10.1007/s10973-012-2776-6

    Article  CAS  Google Scholar 

  38. Zhang T, Yu Q, Wang J et al (2018) Design and fabrication of a renewable and highly transparent multilayer coating on poly(lactic acid) film capable of UV-shielding and antifogging. Ind Eng Chem Res 57:4577–4584. https://doi.org/10.1021/acs.iecr.8b00120

    Article  CAS  Google Scholar 

  39. Ma Y, Bao J, Zhang Y et al (2019) Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 177:243–255. https://doi.org/10.1016/j.cell.2019.01.038

    Article  CAS  PubMed  Google Scholar 

  40. Macgregor-Ramiasa MN, Cavallaro AA, Vasilev K (2015) Properties and reactivity of polyoxazoline plasma polymer films. J Mater Chem B 3:6327–6337. https://doi.org/10.1039/C5TB00901D

    Article  CAS  PubMed  Google Scholar 

  41. Macgregor-Ramiasa MN, Cavallaro AA, Mierczynska A et al (2015) Plasma polymerised polyoxazoline thin films for biomedical applications. Chem Commun 51:4279–4282. https://doi.org/10.1039/C5CC00260E

    Article  CAS  Google Scholar 

  42. Newberry RW, Raines RT (2017) The n → π* interaction. Acc Chem Res 50:1838–1846. https://doi.org/10.1021/acs.accounts.7b00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choudhary A, Gandla D, Krow GR, Raines RT (2009) Nature of amide carbonyl–carbonyl interactions in proteins. J Am Chem Soc 131:7244–7246. https://doi.org/10.1021/ja901188y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliveira JE, Moraes EA, Marconcini JM et al (2013) Properties of poly(lactic acid) and poly(ethylene oxide) solvent polymer mixtures and nanofibers made by solution blow spinning. J Appl Polym Sci 129:3672–3681. https://doi.org/10.1002/app.39061

    Article  CAS  Google Scholar 

  45. Hongen T, Taniguchi T, Nomura S, Kadokawa J, Monde K (2014) In depth study on solution-state structure of poly(lactic acid) by vibrational circular dichroism. Macromolecules 47:5313–5319. https://doi.org/10.1021/ma501020s

    Article  CAS  Google Scholar 

  46. Siročić AP, Hrnjak-Murgić Z, Jelenčić J (2013) The surface energy as an indicator of miscibility of SAN/EDPM polymer blends. J Adhes Sci Technol 27:2615–2628. https://doi.org/10.1080/01694243.2013.796279

    Article  CAS  Google Scholar 

  47. Kurusu RS, Demarquette NR (2017) Surface properties evolution in electrospun polymer blends by segregation of hydrophilic or amphiphilic molecules. Eur Polym J 89:129–137. https://doi.org/10.1016/j.eurpolymj.2017.02.016

    Article  CAS  Google Scholar 

  48. Vrsaljko D, Grčić I, Guyon C et al (2016) Designing hydrophobicity of the PLA polymer blend surfaces by ICP etching. Plasma Process Polym 13:869–878. https://doi.org/10.1002/ppap.201500218

    Article  CAS  Google Scholar 

  49. Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromol 14:3155–3163. https://doi.org/10.1021/bm400784j

    Article  CAS  Google Scholar 

  50. Singh A, Naskar AK, Barden J et al (2011) Terpolymers from lactide and bisphenol a derivatives: scale up, properties, and blends. Appl Polym Sci 122:2520–2528. https://doi.org/10.1002/app.33789

    Article  CAS  Google Scholar 

  51. Hári J, Horváth F, Móczó J et al (2017) Competitive interactions, structure and properties in polymer/layered silicate nanocomposites. Express Polym Lett 11:479–492. https://doi.org/10.3144/expresspolymlett.2017.45

    Article  CAS  Google Scholar 

  52. Montes-Zavala I, Castrejón-González EO, Sánchez-Balderas G et al (2020) Effect of H bonds on thermal behavior and cohesion in polylactic acid nanocomposites and nitrogen-doped carbon nanotubes. J Mater Sci 55:3354–3368. https://doi.org/10.1007/s10853-019-04245-6

    Article  CAS  Google Scholar 

  53. Guerrica-Echevarrı́a G, Eguiazábal JI, Nazábal J (2000) Interfacial tension as a parameter to characterize the miscibility level of polymer blends. Polym Test 19:849–854. https://doi.org/10.1016/S0142-9418(99)00055-0

    Article  Google Scholar 

  54. Nematollahi M, Jalali Arani A, Modarress H (2019) Effect of nanoparticle localization on the rheology, morphology and toughness of nanocomposites based on poly(lactic acid)/natural rubber/nanosilica. Polym Int 68:779–787. https://doi.org/10.1002/pi.5767

    Article  CAS  Google Scholar 

  55. Chen J, Cui X, Zhu Y, Jiang W, Sui K (2017) Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 114:441–448. https://doi.org/10.1016/j.carbon.2016.12.048

    Article  CAS  Google Scholar 

  56. Jańczuk B, Białopiotrowicz T, Wójcik W (1989) The components of surface tension of liquids and their usefulness in determinations of surface free energy of solids. J Colloid Interface Sci 127:59–66. https://doi.org/10.1016/0021-9797(89)90007-6

    Article  Google Scholar 

  57. Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187. https://doi.org/10.1021/la202877k

    Article  CAS  PubMed  Google Scholar 

  58. Wang D, Cornelius CJ (2016) Ionomer thermodynamic interrelationships associated with wettability, surface energy, swelling, and water transport. Eur Polym J 85:126–138. https://doi.org/10.1016/j.eurpolymj.2016.10.024

    Article  CAS  Google Scholar 

  59. Rigoussen A, Verge P, Raquez JM, Habibi Y, Dubois P (2017) In-depth investigation on the effect and role of cardanol in the compatibilization of PLA/ABS immiscible blends by reactive extrusion. Eur Polym J 93:272–283. https://doi.org/10.1016/j.eurpolymj.2017.06.004

    Article  CAS  Google Scholar 

  60. David DJ, Sincock TF (1992) Estimation of miscibility of polymer blends using the solubility parameter concept. Polymer 33:4505–4514. https://doi.org/10.1016/0032-3861(92)90406-M

    Article  CAS  Google Scholar 

  61. Jo E, Yeo JG, Kim DK, Oh JS, Hong CK (2014) Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int 63:1471–1477. https://doi.org/10.1002/pi.4645

    Article  CAS  Google Scholar 

  62. Choi JH, Lee HY, Towns AD (2010) Dyeing properties of novel azo disperse dyes derived from phthalimide and color fastness on poly(lactic acid) fiber. Fibers Polym 11:199–204. https://doi.org/10.1007/s12221-010-0199-1

    Article  CAS  Google Scholar 

  63. Lübtow MM, Haider MS, Kirsch M, Klisch S, Luxenhofer R (2019) Like dissolves like? A comprehensive evaluation of partial solubility parameters to predict polymer-drug compatibility in ultra-high drug loaded polymer micelles. Biomacromol 20:3041–3056. https://doi.org/10.1021/acs.biomac.9b00618

    Article  CAS  Google Scholar 

  64. Stefanis E, Panayiotou C (2012) A new expanded solubility parameter approach. Int J Pharm 426:29–43. https://doi.org/10.1016/j.ijpharm.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  65. Aliotta L, Cinelli P, Coltelli MB, Righetti MC, Gazzano M, Lazzeri A (2017) Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur Polym J 93:822–832. https://doi.org/10.1016/j.eurpolymj.2017.04.041

    Article  CAS  Google Scholar 

  66. Wang H, Zhang J, Tashiro K (2017) Phase transition mechanism of poly(l-lactic acid) among the α, δ, and β forms on the basis of the reinvestigated crystal structure of the β form. Macromolecules 50:3285–3300. https://doi.org/10.1021/acs.macromol.7b00272

    Article  CAS  Google Scholar 

  67. Xie Q, Bao J, Shan G, Bao Y, Pan P (2019) Fractional crystallization kinetics and formation of metastable β-form homocrystals in poly(l-lactic acid)/poly(d-lactic acid) racemic blends induced by precedingly formed stereocomplexes. Macromolecules 52:4655–4665. https://doi.org/10.1021/acs.macromol.9b00644

    Article  CAS  Google Scholar 

  68. Restrepo I, Flores P, Rodríguez-Llamazares S (2019) Antibacterial nanocomposite of poly(lactic acid) and ZnO nanoparticles stabilized with poly(vinyl alcohol): thermal and morphological characterization. Polym Plast Technol Eng 58:105–112. https://doi.org/10.1080/03602559.2018.1466168

    Article  CAS  Google Scholar 

  69. Tábi T, Sajó IE, Sajó F et al (2010) Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett 4:659–668. https://doi.org/10.3144/expresspolymlett.2010.80

    Article  CAS  Google Scholar 

  70. Shen W, Wu W, Liu C et al (2020) Thermal conductivity enhancement of PLA/TPU/BN composites by controlling BN distribution and annealing treatment. Plast, Rubber Compos 49:204–213. https://doi.org/10.1080/14658011.2020.1729657

    Article  CAS  Google Scholar 

  71. Rashidi H, Oshani BN, Hejazi I et al (2010) Tuning crystallization and hydrolytic degradation behaviors of poly(lactic acid) by using silver phosphate, zinc oxide and their nano-hybrids. Polym Plast Technol Eng 59:72–82. https://doi.org/10.1080/25740881.2019.1625382

    Article  CAS  Google Scholar 

  72. Liu Z, Fu M, Ling F et al (2019) Stereocomplex-type polylactide with bimodal melting temperature distribution: toward desirable melt-processability and thermomechanical performance. Polymer 169:21–28. https://doi.org/10.1016/j.polymer.2019.02.029

    Article  CAS  Google Scholar 

  73. He L, Song F, Li D et al (2020) Strong and tough polylactic acid-based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain Chem Eng 8:1573–1582. https://doi.org/10.1021/acssuschemeng.9b06308

    Article  CAS  Google Scholar 

  74. Meng B, Deng J, Liu Q et al (2012) Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur Polym J 48:127–135. https://doi.org/10.1016/j.eurpolymj.2011.10.009

    Article  CAS  Google Scholar 

  75. Cartier L, Okihara T, Ikada Y et al (2000) Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 41:8909–8919. https://doi.org/10.1016/S0032-3861(00)00234-2

    Article  CAS  Google Scholar 

  76. Di Lorenzo ML, Rubino P, Luijkx R et al (2014) Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: effect of optical purity of the monomer. Colloid Polym Sci 292:399–409. https://doi.org/10.1007/s00396-013-3081-z

    Article  CAS  Google Scholar 

  77. Xie Q, Han L, Shan G et al (2016) Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemble aryl amide nucleator. ACS Sustain Chem Eng 4:2680–2688. https://doi.org/10.1021/acssuschemeng.6b00191

    Article  CAS  Google Scholar 

  78. Puiggali J, Ikada Y, Tsuji H et al (2000) The frustrated structure of poly(L-lactide). Polymer 41:8921–8930. https://doi.org/10.1016/S0032-3861(00)00235-4

    Article  CAS  Google Scholar 

  79. Wasanasuk K, Tashiro K (2011) Crystal structure and disorder in poly(l-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form. Polymer 52:6097–6109. https://doi.org/10.1016/j.polymer.2011.10.046

    Article  CAS  Google Scholar 

  80. Chen X, Kalish J, Hsu SL (2011) Structure evolution of α′ phase poly(lactic acid). J Polym Sci, Part B: Polym Phys 49:1446–1454. https://doi.org/10.1002/polb.22327

    Article  CAS  Google Scholar 

  81. Manafi P, Ghasemi I, Karrabi M, Azizi H, Ehsaninamin P (2014) Effect of graphene nanoplatelets on crystallization kinetics of poly (lactic acid). Soft Mater 12:433–444. https://doi.org/10.1080/1539445X.2014.959598

    Article  CAS  Google Scholar 

  82. de Oca HM, Ward IM (2007) Structure and mechanical properties of poly(L-lactic acid) crystals and fibers. J Polym Sci B Polym Phys 45:892–902. https://doi.org/10.1002/polb.21131

    Article  CAS  Google Scholar 

  83. Kim Y, Kim JS, Lee SY et al (2020) Exploration of hybrid nanocarbon composite with polylactic acid for packaging applications. Int J Biol Macromol 144:135–142. https://doi.org/10.1016/j.ijbiomac.2019.11.239

    Article  CAS  PubMed  Google Scholar 

  84. Bao J, Chang X, Xie Q et al (2017) Preferential formation of β-form crystals and temperature-dependent polymorphic structure in supramolecular poly(l-lactic acid) bonded by multiple hydrogen bonds. Macromolecules 50:8619–8630. https://doi.org/10.1021/acs.macromol.7b01705

    Article  CAS  Google Scholar 

  85. Hughes J, Thomas R, Byun Y, Whiteside S (2012) Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydr Polym 88:165–172. https://doi.org/10.1016/j.carbpol.2011.11.078

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Universiti Sains Malaysia Research University Grant (Grant Number 8014024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shyang Chow.

Ethics declarations

Conflicts of interest

No conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, W.K., Chow, W.S. & Ismail, H. Poly(2-ethyl-2-oxazoline) as β-Nucleating Agent for Poly(lactic acid) Blends with High Transparency and Hydrophilicity. J Polym Environ 29, 2650–2659 (2021). https://doi.org/10.1007/s10924-021-02081-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02081-x

Keywords

Navigation