Skip to main content

Advertisement

Log in

Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Coffee is a widely enjoyed beverage and one of the world’s most traded commodities. However, it also generates large amounts of bio-based waste including coffee silverskin (CS) and spent coffee grounds (SCG). Both SCG and CS contain oils, polyphenols, and caffeine among other substances, showing potential for valorization. However, most of the SCG and CS generated by the coffee industry is discarded as waste. SCG and CS are lignocellulosic materials that show potential for the production of biocomposites. Because of their hydrophilic character, chemical modification of these wastes is often necessary before compounding with polymers. Oil extracted from SCG can be cultured with bacteria for producing biopolymers. The use of SCG and CS in nanoform has been seldom explored, although CS in particular shows potential as a source of nanocellulose. Utilization of SCG and CS in packaging development could thus be beneficial in the context of the circular economy. Therefore, this review summarizes recent research on the development of packaging materials using SCG and CS. The composition and characteristics of both wastes are presented, and the production of biopolymers and composites using these materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All relevant data are included in the article.

References

  1. Briandet R, Kemsley EK, Wilson RH (1996) Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics. J Agric Food Chem 44:170–174

    Article  CAS  Google Scholar 

  2. Wu C-T, Agrawal DC, Huang W-Y et al (2019) Functionality analysis of spent coffee ground extracts obtained by the hydrothermal method. J Chem 2019:4671438

    Article  Google Scholar 

  3. ICO (2019) International Coffee Organization: Historical data. http://www.ico.org/new_historical.asp?section=Statistics. Accessed 3 Jul 2020

  4. Campos-Vega R, Loarca-Piña G, Vergara-Castañeda HA, Oomah BD (2015) Spent coffee grounds: a review on current research and future prospects. Trends Food Sci Technol 45:24–36

    Article  CAS  Google Scholar 

  5. Ballesteros LF, Teixeira JA, Mussatto SI (2014) Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol 7:3493–3503

    Article  CAS  Google Scholar 

  6. Murthy PS, Madhava Naidu M (2012) Sustainable management of coffee industry by-products and value addition—A review. Resour Conserv Recycl 66:45–58

    Article  Google Scholar 

  7. Mata TM, Martins AA, Caetano NS (2018) Bio-refinery approach for spent coffee grounds valorization. Bioresour Technol 247:1077–1084

    Article  CAS  PubMed  Google Scholar 

  8. Karmee SK (2018) A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag 72:240–254

    Article  CAS  PubMed  Google Scholar 

  9. Kourmentza C, Economou CN, Tsafrakidou P, Kornaros M (2018) Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Clean Prod 172:980–992

    Article  Google Scholar 

  10. PlasticsEurope (2018) Plastics-The Facts 2018. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf. Accessed 3 Jul 2020

  11. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  12. Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15:205–221

    Article  CAS  Google Scholar 

  13. Mohammad Zadeh E, O’Keefe SF, Kim Y-T, Cho J-H (2018) Evaluation of enzymatically modified soy protein isolate film forming solution and film at different manufacturing conditions. J Food Sci 83:946–955

    Article  CAS  PubMed  Google Scholar 

  14. Mohammad Zadeh E, O’Keefe SF, Kim Y-T (2018) Utilization of lignin in biopolymeric packaging films. ACS Omega 3:7388–7398

    Article  Google Scholar 

  15. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  16. Obruca S, Benesova P, Kucera D et al (2015) Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N Biotechnol 32:569–574

    Article  CAS  PubMed  Google Scholar 

  17. McNutt J, He Q, (Sophia), (2019) Spent coffee grounds: A review on current utilization. J Ind Eng Chem 71:78–88

    Article  CAS  Google Scholar 

  18. Mussatto SI, Carneiro LM, Silva JPA et al (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83:368–374

    Article  CAS  Google Scholar 

  19. Speer K, Kölling-Speer I (2006) The lipid fraction of the coffee bean. Brazilian J Plant Physiol 18:201–216

    Article  CAS  Google Scholar 

  20. Obruca S, Petrik S, Benesova P et al (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890

    Article  CAS  PubMed  Google Scholar 

  21. Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int Biodeterior Biodegr 126:45–56

    Article  CAS  Google Scholar 

  22. Dattatraya Saratale G, Bhosale R, Shobana S et al (2020) A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresour Technol 314:123800

    Article  CAS  PubMed  Google Scholar 

  23. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108

    CAS  PubMed  Google Scholar 

  24. Povolo S, Toffano P, Basaglia M, Casella S (2010) Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour Technol 101:7902–7907

    Article  CAS  PubMed  Google Scholar 

  25. Bhatia SK, Kim J-H, Kim M-S et al (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 41:229–235

    Article  CAS  PubMed  Google Scholar 

  26. Cruz MV, Paiva A, Lisboa P et al (2014) Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol 157:360–363

    Article  CAS  PubMed  Google Scholar 

  27. Obruca S, Benesova P, Petrik S et al (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49:1409–1414

    Article  CAS  Google Scholar 

  28. Lee GN, Choi SY, Na J et al (2014) Production of polyhydroxybutyrate from crude glycerol and spent coffee grounds extract by Bacillus cereus isolated from sewage treatment plant. KSBB J 29:399–404

    Article  Google Scholar 

  29. Lee W-H, Loo C-Y, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99:6844–6851

    Article  CAS  PubMed  Google Scholar 

  30. Kourmentza C, Plácido J, Venetsaneas N et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55

    Article  PubMed Central  Google Scholar 

  31. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  32. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  Google Scholar 

  33. Crompton TR (2012) Mechanical properties of polymers. Physical testing of plastics. Smithers Rapra Technology, London, pp 1–48

    Google Scholar 

  34. Keller PE, Kouzes R (2017) Water vapor permeation in plastics. Pacific Northwest National Laboratory, Washington

    Book  Google Scholar 

  35. D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polym Test 49:22–28

    Article  Google Scholar 

  36. Hudeckova H, Neureiter M, Obruca S et al (2018) Biotechnological conversion of spent coffee grounds into lactic acid. Lett Appl Microbiol 66:306–312

    Article  CAS  PubMed  Google Scholar 

  37. Gama NV, Soares B, Freire CSR et al (2015) Bio-based polyurethane foams toward applications beyond thermal insulation. Mater Des 76:77–85

    Article  CAS  Google Scholar 

  38. Baek B-S, Park J-W, Lee B-H, Kim H-J (2013) Development and application of green composites: Using coffee ground and bamboo flour. J Polym Environ 21:702–709

    Article  CAS  Google Scholar 

  39. Cestari SP, Mendes LC, da Silva DF et al (2013) Properties of recycled high density polyethylene and coffee dregs composites. Polímeros 23:733–737

    Article  CAS  Google Scholar 

  40. Kumar TSM, Rajini N, Huafeng T et al (2019) Improved mechanical and thermal properties of spent coffee bean particulate reinforced poly(propylene carbonate) composites. Part Sci Technol 37:643–650

    Article  Google Scholar 

  41. Moustafa H, Guizani C, Dufresne A (2017) Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J Appl Polym Sci 134:44498

    Article  Google Scholar 

  42. Chitra NJ, Vasanthakumari R, Amanulla S (2014) Preliminary studies of the effect of coupling agent on the properties of spent coffee grounds polypropylene bio-composites. Int J Eng Res Technol 7:9–16

    Google Scholar 

  43. Panzella L, Cerruti P, Ambrogi V et al (2016) A superior all-natural antioxidant biomaterial from spent coffee grounds for polymer stabilization, Cell protection, and food lipid preservation. ACS Sustain Chem Eng 4:1169–1179

    Article  CAS  Google Scholar 

  44. Tan MY, Nicholas Kuan HT, Lee MC (2017) Characterization of alkaline treatment and fiber content on the physical, thermal, and mechanical properties of ground coffee waste/oxobiodegradable HDPE biocomposites. Int J Polym Sci 2017:6258151

    Article  Google Scholar 

  45. Cacciotti I, Mori S, Cherubini V, Nanni F (2018) Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. Int J Biol Macromol 112:567–575

    Article  CAS  PubMed  Google Scholar 

  46. Lee HJ, Lee HK, Lim E, Song YS (2015) Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos Sci Technol 118:193–197

    Article  CAS  Google Scholar 

  47. Cataldo VA, Cavallaro G, Lazzara G et al (2017) Coffee grounds as filler for pectin: green composites with competitive performances dependent on the UV irradiation. Carbohydr Polym 170:198–205

    Article  CAS  PubMed  Google Scholar 

  48. Mendes JF, Martins JT, Manrich A et al (2019) Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydr Polym 210:92–99

    Article  CAS  PubMed  Google Scholar 

  49. Sohn JS, Ryu Y, Yun C-S et al (2019) Extrusion compounding process for the development of eco-friendly SCG/PP composite pellets. Sustainability 11:1720

    Article  CAS  Google Scholar 

  50. Essabir H, Raji M, Laaziz SA et al (2018) Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos Part B Eng 149:1–11

    Article  CAS  Google Scholar 

  51. Thiagamani SMK, Nagarajan R, Jawaid M et al (2017) Utilization of chemically treated municipal solid waste (spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications. Waste Manag 69:445–454

    Article  CAS  PubMed  Google Scholar 

  52. García-García D, Carbonell A, Samper MD et al (2015) Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Compos Part B Eng 78:256–265

    Article  Google Scholar 

  53. Moustafa H, Guizani C, Dupont C et al (2017) Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5:1906–1916

    Article  CAS  Google Scholar 

  54. Wu H, Hu W, Zhang Y et al (2016) Effect of oil extraction on properties of spent coffee ground–plastic composites. J Mater Sci 51:10205–10214

    Article  CAS  Google Scholar 

  55. Wu C-S (2015) Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polym Degrad Stab 121:51–59

    Article  CAS  Google Scholar 

  56. Lee HK, Park YG, Jeong T, Song YS (2015) Green nanocomposites filled with spent coffee grounds. J Appl Polym Sci 132:42043

    Article  Google Scholar 

  57. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer (Guildf) 49:3187–3204

    Article  CAS  Google Scholar 

  58. Songtipya L, Limchu T, Phuttharak S, et al (2019) Poly (lactic acid)-based composites incorporated with spent coffee ground and tea leave for food packaging application: A waste to wealth. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 12047

  59. Zarrinbakhsh N, Wang T, Rodriguez-Uribe A et al (2016) Characterization of wastes and coproducts from the coffee industry for composite material production. BioResources 11:7637–7653

    Article  CAS  Google Scholar 

  60. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  PubMed  Google Scholar 

  61. da Silva LA, de Almeida TMB, Teixeira RV et al (2017) Study of coffee grounds oil action in PVC matrix exposed to gamma radiation: Comparison of systems in film and specimen forms. Mater Res 20:709–715

    Article  Google Scholar 

  62. Wu C-S (2017) Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: Preparation, cell proliferation, antioxidant activity and tyrosinase activity. Mater Sci Eng C 78:530–538

    Article  CAS  Google Scholar 

  63. Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI (2018) Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int J Biol Macromol 106:647–655

    Article  CAS  PubMed  Google Scholar 

  64. Ballesteros LF, Cerqueira MA, Teixeira JA, Mussatto SI (2015) Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr Polym 127:347–354

    Article  CAS  PubMed  Google Scholar 

  65. Toschi TG, Cardenia V, Bonaga G et al (2014) Coffee silverskin: Characterization, possible uses, and safety aspects. J Agric Food Chem 62:10836–10844

    Article  CAS  PubMed  Google Scholar 

  66. Costa ASG, Alves RC, Vinha AF et al (2018) Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem 267:28–35

    Article  CAS  PubMed  Google Scholar 

  67. Narita Y, Inouye K (2014) Review on utilization and composition of coffee silverskin. Food Res Int 61:16–22

    Article  CAS  Google Scholar 

  68. Borrelli RC, Esposito F, Napolitano A et al (2004) Characterization of a new potential functional ingredient: Coffee silverskin. J Agric Food Chem 52:1338–1343

    Article  CAS  PubMed  Google Scholar 

  69. Ajayi B (2006) Dimensional stability of cement-bonded boards manufactured with coffee chaff. J Korean Wood Sci Technol 34:52–58

    Google Scholar 

  70. Barone JR (2009) Lignocellulosic fiber-reinforced keratin polymer composites. J Polym Environ 17:143

    Article  CAS  Google Scholar 

  71. Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503

    Article  CAS  PubMed  Google Scholar 

  72. Totaro G, Sisti L, Fiorini M et al (2019) Formulation of green particulate composites from PLA and PBS matrix and wastes deriving from the coffee production. J Polym Environ 27:1488–1496

    Article  CAS  Google Scholar 

  73. Sarasini F, Luzi F, Dominici F et al (2018) Effect of different compatibilizers on sustainable composites based on a PHBV/PBAT matrix filled with coffee silverskin. Polymers (Basel) 10:1256

    Article  Google Scholar 

  74. Sarasini F, Tirillò J, Zuorro A et al (2018) Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind Crops Prod 118:311–320

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coralia V. Garcia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, C.V., Kim, YT. Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review. J Polym Environ 29, 2372–2384 (2021). https://doi.org/10.1007/s10924-021-02067-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02067-9

Keywords

Navigation