Skip to main content
Log in

Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review

  • Review
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Palladium (Pd) is considered as powerful catalyst in many organic syntheses of industrial importance, employed in areas like medicine, pharmacology, cosmetics, pesticides and degradation of organic pollutants. In heterogeneous catalysis, stabilization of Pd nanoparticles (NPs) is foremost to prevent aggregation for getting high catalytic efficiency. Celluloses, being green support, have been widely used in different forms such as bulk, modified or nanocelluloses for stabilizing Pd NPs. The unique properties like high mechanical strength, thermal stability, high functionality, insolubility in water and in most organic solvents and good anchoring ability with metal NPs had made them good support for Pd NPs. However, special attention is needed on further improving the binding efficiency of Pd NPs with cellulose without affecting the catalytic property for achieving long term recycle stability. This review will focus on the merits and demerits of the existing cellulose supported Pd catalysts and propose solutions to overcome the limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [76])

Fig. 2

(Reproduced with permission from Ref. [79])

Fig. 3

(Reproduced from Ref. [80])

Fig. 4

(Reproduced from Ref. [92])

Fig. 5

(Reproduced from Ref. [98])

Fig. 6

(Reproduced from Ref. [94])

Fig. 7

(Reproduced from Ref. [99])

Scheme 1
Scheme 2

(Reproduced with permission from Ref. [73])

Fig. 8

(Reproduced with permission from Ref. [83])

Similar content being viewed by others

References

  1. C. A. Busacca, D. R. Fandrick, J. J. Song, and C. H. Senanayake (2011). Adv. Synth. Cat. 353, 1825.

    Article  CAS  Google Scholar 

  2. M. A. Rabbi, M. M. Rahman, H. Minami, M. R. Habib, and H. Ahmad (2020). Carbohydr. Polym. 233, 115842.

    Article  CAS  PubMed  Google Scholar 

  3. P. Anastas and N. Eghbali (2010). Chem. Soc. Rev. 39, 301.

    Article  CAS  PubMed  Google Scholar 

  4. T. Baran, I. Sargin, M. Kaya, and A. Mentes (2016). J. Molecul. Catal. A: Chem. 420, 216.

    Article  CAS  Google Scholar 

  5. D. Milstein and J. Stille (1978). J. Am. Chem. Soc. 100, 3636.

    Article  CAS  Google Scholar 

  6. K. Sonogashira, Y. Tohda, and N. Hagihara (1975). Tetrahedron Lett. 16, 4467.

    Article  Google Scholar 

  7. L. You, W. Zhu, S. Wang, G. Xiong, F. Ding, B. Ren, I. Dragutan, V. Dragutan, and Y. Sun (2016). Polyhedron 115, 47.

    Article  CAS  Google Scholar 

  8. L. Yin and J. Liebscher (2007). Chem. Rev. 107, 133.

    Article  CAS  PubMed  Google Scholar 

  9. R. Lakshimipathy, B. P. Reddy, N. C. Sarada, K. Chidambaram, and S. K. Pasha (2015). Appl. Nanosci. 5, 223.

    Article  Google Scholar 

  10. M. Kosugi, M. Mameyama, and T. Migita (1983). Chem. Lett. 12, 927.

    Article  Google Scholar 

  11. A. F. S. Zanato, V. C. Silva, D. A. Lima, and M. J. Jacinto (2017). Appl. Nanosci. 7, 781.

    Article  CAS  Google Scholar 

  12. M. Guerrero, N. J. S. Costa, L. L. R. Vono, L. M. Rossi, E. V. Gesevskaya, and K. Philippot (2013). J. Mater. Chem. A 1, 1441.

    Article  CAS  Google Scholar 

  13. H. J. Chen, H. W. Liu, W. Liao, H.-B. Pan, C. M. Wai, K.-H. Chiu, and J.-F. Jen (2012). Appl. Catal. B: Environ. 111–112, 402.

    Article  Google Scholar 

  14. F. Zhang, Y. Jin, Y. Fu, W. Zhu, A. A. Ibrahim, and M. S. El-Shall (2015). J. Mater. Chem. A 3, 17008.

    Article  CAS  Google Scholar 

  15. A. Safavi and S. Momeni (2012). J. Hazard. Mater. 201–202, 125.

    Article  PubMed  Google Scholar 

  16. Y. Xu, L. Zhang, and Y. Cui (2008). J. Appl. Polym. Sci. 110, 2996.

    Article  CAS  Google Scholar 

  17. H. Li, M. Gao, Q. Gao, H. Wang, B. Han, K. Xia, and C. Zhou (2020). Appl. Nanosci. 10, 359.

    Article  CAS  Google Scholar 

  18. P. Cotugno, M. Casiello, A. Nacci, P. Mastrorilli, M. M. Dell’Anna, and A. Monopoli (2014). J. Organomet. Chem. 752, 1–5.

    Article  CAS  Google Scholar 

  19. B. C. Makhubela, A. Jardine, and G. S. Smith (2011). Appl. Catal. A: General 393, 231.

    Article  CAS  Google Scholar 

  20. V. N. Mikhaylov, V. N. Sorokoumov, K. A. Korvinson, A. S. Novikov, and I. A. Balova (2016). Organometallics 35, 1684.

    Article  CAS  Google Scholar 

  21. K. V. S. Ranganath, S. Onitsuka, A. K. Kumar, and J. Inanaga (2013). Catal. Sci. Technol. 3, 2161.

    Article  CAS  Google Scholar 

  22. J.-P. Corbet and G. Mignani (2006). Chem. Rev. 106, 2651.

    Article  CAS  PubMed  Google Scholar 

  23. C. Ornelas, J. Ruiz, L. Salmon, and D. Astruc (2008). Adv. Synth. Catal. 350, 837.

    Article  CAS  Google Scholar 

  24. B. Karimi, A. Zamani, S. Abedi, and J. H. Clark (2009). Green Chem. 11, 109.

    Article  CAS  Google Scholar 

  25. I. B. Tsvetkova, V. G. Matveeva, V. Y. Doluda, A. V. Bykov, A. I. Sidorov, S. V. Schennikov, M. G. Sulman, P. M. Valetsky, B. D. Stein, C.-H. Chen, E. M. Sulman, and L. M. Bronstein (2012). J. Mater. Chem. 22, 6441.

    Article  CAS  Google Scholar 

  26. L. Geng, Y. Li, Z. Qi, H. Fan, Z. Zhou, R. Chen, Y. Wang, and J. Huang (2016). J. Catal. Commun. 82, 24–28.

    Article  CAS  Google Scholar 

  27. A. Pourjavadi, A. Motamedi, W. Z. Marvdashti, and S. H. Hosseni (2017). Catal. Commun. 97, 27–31.

    Article  CAS  Google Scholar 

  28. E. Murugan, J. N. Jebaranjitham, and A. Usha (2012). Appl. Nanosci. 2, 211.

    Article  CAS  Google Scholar 

  29. S. Hermans, V. Bruyr, and M. Devillers (2012). J. Mater. Chem. 22, 14479.

    Article  CAS  Google Scholar 

  30. Y. Li, X. Fan, J. Qi, S. Wang, G. Zhang, and F. Zhang (2010). Nano Res. 3, 429.

    Article  CAS  Google Scholar 

  31. R. Bernini, S. Cacchi, G. Fabrizi, G. Forte, F. Petrucci, A. Prastaro, S. Niembro, A. Shafir, and A. Vallribera (2010). Green Chem. 12, 150.

    Article  CAS  Google Scholar 

  32. S. Okada, T. Kamegawa, K. Mori, and H. Yahmashita (2012). Catal. Today 185, 109.

    Article  CAS  Google Scholar 

  33. V. Polshettiwar and Á. Molnár (2007). Tetrahedron 63, 6949.

    Article  CAS  Google Scholar 

  34. A. Dhakshinamoorthy and H. Garcia (2012). Chem. Soc. Rev. 41, 5262.

    Article  CAS  PubMed  Google Scholar 

  35. S. Liu, Q. Zhou, Z. Jin, H. Jiang, and X. Jiang (2010). Chin. J. Catal. 31, 557.

    Article  Google Scholar 

  36. F. Quignard, A. Choplin, and A. Domard (2000). Langmuir 16, 9106.

    Article  CAS  Google Scholar 

  37. H. Firouzabadi, N. Iranpoor, and A. Ghaderi (2011). J. Mol. Catal. A Chem. 347, 38–45.

    Article  CAS  Google Scholar 

  38. K. Huang, L. Xue, Y.-C. Hu, M.-Y. Huang, and Y.-Y. Jiang (2002). React. Funct. Polym. 50, 199.

    Article  CAS  Google Scholar 

  39. A. Kumbhar and R. Salunkhe (2015). Curr. Org. Chem. 19, 2075.

    Article  CAS  Google Scholar 

  40. F. Quignard and A. Choplin (2001). Chem. Commun. 1, 21–22.

    Article  Google Scholar 

  41. H. Koga, E. Tokunaga, M. Hidaka, Y. Umemura, T. Saito, A. Isogai, and T. Kitaoka (2010). Chem. Commun. 46, 8567.

    Article  CAS  Google Scholar 

  42. T. G. van de Ven and A. Sheikhi (2016). Nanoscale 8, 15101.

    Article  PubMed  Google Scholar 

  43. K. Singh, J. K. Arora, T. J. M. Sinha, and S. Srivastava (2014). Clean Technol. Environ. Policy 16, 1179.

    Article  CAS  Google Scholar 

  44. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood (2011). Chem. Soc. Rev. 40, 3941.

    Article  CAS  PubMed  Google Scholar 

  45. X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, and W. Song (2013). J. Environ. Sci. 25, 933.

    Article  CAS  Google Scholar 

  46. H.-Y. Yu, G.-Y. Chen, Y.-B. Wang, and J.-M. Yao (2015). Cellulose 22, 261.

    Article  CAS  Google Scholar 

  47. R. Xiong, C. Lu, Y. Wang, Z. Zhou, and X. Zhang (2013). J. Mater. Chem. A 1, 14910.

    Article  CAS  Google Scholar 

  48. Y. Habibi, L. A. Lucia, and O. J. Rojas (2010). Chem. Rev. 110, 3479.

    Article  CAS  PubMed  Google Scholar 

  49. B. L. Peng, N. Dhar, H. Liu, and K. C. Tam (2011). Can. J. Chem. Eng. 89, 1191.

    Article  CAS  Google Scholar 

  50. J. Tang, J. Sisler, N. Grishkewich, and K. C. Tam (2017). J. Colloid Interf. Sci. 494, 397.

    Article  CAS  Google Scholar 

  51. H. Yang, D. Chen, and T. G. van de Ven (2015). Cellulose 22, 1743.

    Article  CAS  Google Scholar 

  52. N. Hayashi, T. Kondo, and M. Ishihara (2005). Carbohydr. Polym. 61, 191.

    Article  CAS  Google Scholar 

  53. J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, and Y. Liu (2012). Carbohydr. Polym. 90, 1609.

    Article  CAS  PubMed  Google Scholar 

  54. O. Nechyporchuk, M. N. Belgacem, and J. Bras (2016). Ind. Crops Prod. 93, 2–25.

    Article  CAS  Google Scholar 

  55. I. B. Tabar, X. Zhang, J. P. Youngblood, and N. S. Mosier (2017). Carbohydr. Polym. 174, 120.

    Article  Google Scholar 

  56. X. Xu, F. Liu, L. Jiang, J. Y. Zhu, D. Haagenson, and D. P. Wiesenborn (2013). ACS Appl. Mater. Interf. 5, 2999.

    Article  CAS  Google Scholar 

  57. M. Božič, P. Liu, A. P. Mathew, and V. Kokol (2014). Cellulose 21, 2713.

    Article  Google Scholar 

  58. S. Sarkar, E. Guibal, F. Quignard, and A. K. SenGupta (2012). J. Nanoparticle Res. 14, 715.

    Article  Google Scholar 

  59. B. Volesky (2007). Water Res. 41, 4017.

    Article  CAS  PubMed  Google Scholar 

  60. X. Zhang, L. Chen, R. Liu, D. Li, X. Ge, and G. Ge (2019). Langmuir 35, 8325.

    CAS  PubMed  Google Scholar 

  61. X. Zhang, L. Chen, L. Yuan, R. Liu, D. Li, X. Liu, and G. Ge (2019). Langmuir 35, 5770.

    Article  CAS  PubMed  Google Scholar 

  62. T. Gao, B. Na, H. Choi, and K. Chung (2018). Mater. Lett. 214, 154.

    Article  CAS  Google Scholar 

  63. D. Mercier, J.-C. Rouchaud, and M.-G. Barthés-Labrousse (2008). Appl. Surface Sci. 254, 6495.

    Article  CAS  Google Scholar 

  64. C. Ludwig, J.-L. Devidal, and W. H. Casey (1996). Geochim. Cosmochim. Acta 60, 213.

    Article  CAS  Google Scholar 

  65. H. Wei, K. Rodriguez, S. Renneckar, and P. J. Vikesland (2014). Environ. Sci. Nano 1, 302.

    Article  CAS  Google Scholar 

  66. L. Valencia, S. Kumar, E. M. Nomena, G. Salazar-Alvarez, and A. P. Mathew (2020). ACS Appl. Nano Mater. 3, 7172.

    Article  CAS  Google Scholar 

  67. B. Tang, J. Kaur, L. Sun, and X. Wang (2013). Cellulose 20, 3053.

    Article  CAS  Google Scholar 

  68. K. R. Reddy, N. S. Kumar, P. S. Reddy, B. Sreedhar, and M. L. Kantam (2006). J. Mol. Catal. A: Chem. 252, 12–16.

    Article  CAS  Google Scholar 

  69. P. Zhou, H. Wang, J. Yang, J. Tang, D. Sun, and W. Tang (2012). Ind. Eng. Chem. Res. 51, 5743.

    Article  CAS  Google Scholar 

  70. P. Zhou, H. Wang, J. Yang, J. Tang, D. Sun, and W. Tang (2012). RSC Adv. 2, 1759.

    Article  CAS  Google Scholar 

  71. N. Jamwal, R. K. Sodhi, P. Gupta, and S. Paul (2011). Int. J. Biol. Macromol. 49, 930.

    Article  CAS  PubMed  Google Scholar 

  72. C. M. Cirtiu, A. F. Dunlop-Brière, and A. Moores (2011). Green Chem. 13, 288.

    Article  CAS  Google Scholar 

  73. M. Kaushik, K. Basu, C. Benoit, C. M. Cirtiu, H. Vali, and A. Moores (2015). J. Am. Chem. Soc. 137, 6124.

    Article  CAS  PubMed  Google Scholar 

  74. S. Keshipour, S. Shojaei, and A. Shaabani (2013). Cellulose 20, 973.

    Article  CAS  Google Scholar 

  75. S. Keshipour and K. Adak (2016). RSC Adv. 6, 89407.

    Article  CAS  Google Scholar 

  76. Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu, Y. Zhong, L. Zhang, B. Wang, and X. Sui (2017). ACS Appl. Mater. Interf. 9, 17155.

    Article  CAS  Google Scholar 

  77. A. V. Dubey and A. V. Kumar (2016). RSC Adv. 6, 46864.

    Article  CAS  Google Scholar 

  78. Y. Liu, K. Ai, and L. Lu (2014). Chem. Rev. 114, 5057.

    Article  CAS  PubMed  Google Scholar 

  79. X. Wu, Z. Shi, S. Fu, J. Chen, R. M. Berry, and K. C. Tam (2016). ACS Sustain. Chem. Eng. 4, 5929.

    Article  CAS  Google Scholar 

  80. Z. Jebali, A. Granados, A. Nabili, S. Boufi, A. M. do Rego, H. Majdoub, and A. Vallribera (2018). Cellulose 25, 6963.

  81. K. Zhang, M. Shen, H. Liu, S. Shang, D. Wang, and H. Liimatainen (2018). Carbohydr. Polym. 186, 132.

    Article  CAS  PubMed  Google Scholar 

  82. Z. Xiang, Y. Chen, Q. Liu, and F. Lu (2018). Green Chem. 20, 1085.

    Article  CAS  Google Scholar 

  83. J. M. Phillips, M. Ahamed, X. F. Duan, R. L. Lamb, X. Qu, K. Zheng, J. Zou, J. M. Chalker, and C. L. Raston (2019). ACS Appl. Bio Mater. 2, 488.

    Article  CAS  PubMed  Google Scholar 

  84. N. Y. Baran, T. Baran, and A. Menteş (2018). Carbohydr. Polym. 181, 596.

    Article  PubMed  Google Scholar 

  85. D. Li, J. Zhang, and C. Cai (2018). J. Org. Chem. 83, 7534.

    Article  CAS  PubMed  Google Scholar 

  86. B. Wang, L. Dai, G. Yang, G. Bendrich, Y. Ni, and G. Fang (2019). Carbohydr. Polym. 226, 115289.

    Article  CAS  PubMed  Google Scholar 

  87. B. R. Evans, H. M. O’Neill, V. P. Malyvanh, I. Lee, and J. Woodward (2003). Biosens. Bioelectron. 18, 917.

    Article  CAS  PubMed  Google Scholar 

  88. L. Xu, X. C. Wu, and J. J. Zhu (2008). Nanotechnology 19, 305603.

    Article  PubMed  Google Scholar 

  89. Y. Xu, M. Xue, J. Li, L. Zhang, and Y. Cui (2010). React. Kinet. Mech. Catal. 100, 347.

    CAS  Google Scholar 

  90. X. Wu, C. Lu, W. Zhang, G. Yuan, R. Xiong, and X. Zhang (2013). J. Mater. Chem. A 1, 8645.

    Article  CAS  Google Scholar 

  91. M. Rezayat, R. K. Blundell, J. E. Camp, D. A. Walsh, and W. Thielemans (2014). ACS Sustain. Chem. Eng. 2, 1241.

    Article  CAS  Google Scholar 

  92. Q. Du and Y. Li (2011). Beilstein J. Org. Chem. 7, 378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. D. Petkova, N. Borlinghaus, S. Sharma, J. Kaschel, T. Lindner, J. Klee, A. Jolit, V. Haller, S. Heitz, K. Britze, J. Detrich, W. M. Braje, and S. Handa (2020). ACS Sustain. Chem. Eng. 8, 12612.

    Article  CAS  Google Scholar 

  94. S. Seyednejhad, M. A. Khalilzadeh, D. Zareyee, H. Sadeghifar, and R. Venditti (2019). Cellulose 26, 5015.

    Article  CAS  Google Scholar 

  95. C. Fleckenstein, S. Roy, S. Leuthäußer, and H. Plenio (2007). Chem. Commun. 27, 2870.

    Article  Google Scholar 

  96. T. T. Gao, A. P. Jin, and L. X. Shao (2012). Beilstein J. Org. Chem. 8, 1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. X. Wang, P. Hu, F. Xue, and Y. Wei (2014). Carbohydr. Polym. 114, 476.

    Article  CAS  PubMed  Google Scholar 

  98. Z. Lu, J. B. Jasinski, S. Handa, and G. B. Hammond (2018). Org. Biomol. Chem. 16, 2748.

    Article  CAS  PubMed  Google Scholar 

  99. B. Wang, M. Ran, G. Fang, T. Wu, Q. Tian, L. Zheng, L. Romero-Zerón, and Y. Ni (2020). Cellulose 27, 6995.

    Article  CAS  Google Scholar 

  100. M. Kempasiddaiah, V. Kandathil, R. B. Dateer, B. S. Sasidhar, S. A. Patil, and S. A. Patil (2020). Cellulose 27, 3335.

    Article  CAS  Google Scholar 

  101. V. W. Faria, D. G. M. Oliveira, M. H. S. Kurz, F. F. Gonçalves, and C. W. Scheeren (2014). RSC Adv. 4, 13446.

    Article  CAS  Google Scholar 

  102. D. Sun, J. Yang, J. Li, J. Yu, X. Xu, and X. Yang (2010). Appl. Surf. Sci. 256, 2241.

    Article  CAS  Google Scholar 

  103. S. Keshipour and N. K. Khalteh (2016). Appl. Organometal. Chem. 30, 653.

    Article  CAS  Google Scholar 

  104. S. Keshipour and A. Shaabani (2014). Appl. Organometal. Chem. 28, 116.

    Article  CAS  Google Scholar 

  105. J. J. Verendel, T. L. Church, and P. G. Andersson (2011). Synthesis 11, 1649.

    Google Scholar 

  106. V. K. Thakur, M. K. Thakur, P. Raghavan, and M. Kessler (2014). ACS Sust. Chem. Eng. 2, 1072.

    Article  CAS  Google Scholar 

  107. M. J. Rak, T. Friscic, and A. Moores (2014). Faraday Discuss. 170, 155.

    Article  CAS  PubMed  Google Scholar 

  108. Guideline on the specification limits for residues of metal catalysts or metal reagents. (European Medicines Agency, 2008), https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-specification-limits-residues-metal-catalysts-metal-reagents_en.pdf. Accessed 16 July, 2020

  109. G. T. Fu, X. Jiang, L. Ding, L. Tao, Y. Chen, Y. Tang, Y. Zhou, S. Wei, J. Lin, and T. Lu (2013). Appl. Catal. B: Environ. 138–139, 167.

    Article  Google Scholar 

  110. J. Morere, M. J. Tenorio, M. J. Torralvo, C. Pando, J. A. R. Renuncio, and A. Cabañas (2011). J. Supercrit. Fluids 56, 213.

    Article  CAS  Google Scholar 

  111. A. Kumbhar, S. Jadhav, S. Kamble, G. Rashinkar, and R. Salunkhe (2013). Tetrahedron Lett. 54, 1331.

    Article  CAS  Google Scholar 

  112. E. Hariprasad and T. P. Radhakrishnan (2012). ACS Catal. 2, 1179.

    Article  CAS  Google Scholar 

  113. T. Nishikata, H. Tsutsumi, L. Gao, K. Kojima, K. Chikama, and H. Nagashima (2014). Adv. Synth. Catal. 356, 951.

    Article  CAS  Google Scholar 

Download references

Funding

No research funding was available for the investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ahmad.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H. Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review. J Clust Sci 33, 421–438 (2022). https://doi.org/10.1007/s10876-021-02000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02000-z

Keywords

Navigation