Skip to main content
Log in

Improving the electroluminescence of Si nanocrystal via black silicon and silver surface plasmons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, black silicon (Si) and silver (Ag) surface plasmons were used to improve the electroluminescence (EL) intensity of silicon nanocrystals (Si-nc), and the mechanism of black Si and Ag nanoparticles enhancing the EL of Si-nc LED is analyzed. The Ag nanoparticles are introduced into Si-nc LED to generate surface plasmons. The surface plasmons radiate the local electromagnetic field, which can increase the excitation probability of Si-nc and increase the EL intensity of Si-nc LED. In addition, black silicon can improve the charge injection efficiency and light emission efficiency. The atomic force microscope (AFM) and reflectivity spectra of black silicon at different etching time, as well as the AFM and absorption spectra of Ag nanoparticles at different postannealing temperatures, were measured. Three different device structures were designed. The EL intensity of Si-nc increased by 3.2 times at the etching time of 5 minutes and increased by 4.9 times at the postannealing temperature of 200 °C, respectively. A maximal 8.5-fold EL enhancement of Si-nc was readily achieved after using the black Si as substrate and incorporating Ag surface plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.M. Fauchet, Today 8, 26 (2005)

    Google Scholar 

  2. G.R. Lin, C.J. Lin, C.T. Lin, Nanotechnology 18, 395202 (2007)

    Article  Google Scholar 

  3. G.R. Lin, Y.H. Pai, C.T. Lin, C.C. Chen, Appl. Phys. Lett. 96, 263514 (2010)

    Article  ADS  Google Scholar 

  4. Z.Q. Xie, D. Cheng, Z.H. Li, Y.Y. Zhao, M. Lu, Nanotechnology 18, 115716 (2007)

    Article  ADS  Google Scholar 

  5. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, P. Bellutti, J. Appl. Phys. 106, 033104 (2009)

    Article  ADS  Google Scholar 

  6. J.R. Chen, D.C. Wang, H.C. Hao, M. Lu, Appl. Phys. Lett. 104, 061105 (2014)

    Article  ADS  Google Scholar 

  7. L. Ding, M.B. Yu, X.G. Tu, G.Q. Lo, S. Tripathy, T.P. Chen, Opt. Express 19, 2729 (2011)

    Article  ADS  Google Scholar 

  8. D. Li, Y.B. Chen, M. Lu, Mater. Lett. 89, 9 (2012)

    Article  Google Scholar 

  9. H.P. Wu, A. Okano, K. Takayanagi, Appl. Phys. A 71, 6 (2000)

    Google Scholar 

  10. Z.Q. Zhou, Y. Qiu, W. Shi, T. Sun, Y.L. Li, M. Lu, Physica E 64, 63 (2014)

    Article  ADS  Google Scholar 

  11. D.J. Lockwood, J. Mater. Sci.: Mater. Electron. 20, 235 (2009)

    Google Scholar 

  12. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, D.W. Prather, J. Lumin. 130, 631 (2010)

    Article  Google Scholar 

  13. H. Rinnert, M. Vergnat, J. Lumin. 113, 64 (2005)

    Article  Google Scholar 

  14. G.Z. Ran, Y. Chen, W.C. Qin, J.S. Fu, Z.C. Ma, W.H. Zong, H. Lu, J. Qin, G.G. Qin, J. Appl. Phys. 90, 5835 (2001)

    Article  ADS  Google Scholar 

  15. Z.H. Yuan, W. Zhou, Y.Q. Duan, L.J. Bie, Nanotechnology 19, 075608 (2008)

    Article  ADS  Google Scholar 

  16. R.T. Tung, Phys. Rev. B 64, 205310 (2001)

    Article  ADS  Google Scholar 

  17. M. Sakamoto, Y. Jin, S. Yoneshima, C. Katoka, H. Tatsuta, S. Kashiwada, Arch Environ ContamToxicol 68, 500 (2005)

    Article  Google Scholar 

  18. Z.X. Jia, M.B. Amar, O. Brinza, A. Astafiev, V. Nadtochenko, A.B. Evlyukhin, B.N. Chichkov, X. Duten, A. Kanaev, J. Phys. Chem. C 116, 32 (2012)

    Google Scholar 

  19. L. Mangolini, E. Thimsen, U. Kortshagen, NanoLett. 5, 655 (2005)

    Article  ADS  Google Scholar 

  20. H.A. Kadhum, W.M. Salih, A.M. Rheima, Appl. Phys. A 126, 10 (2020)

    Article  Google Scholar 

  21. B.H. Kim, R.F. Davis, C.H. Cho, Appl. Phys. Lett. 95, 73113 (2009)

    Article  Google Scholar 

  22. S.W. Fu, H.J. Chen, H. Wu, Nanoscale 8, 7155 (2016)

    Article  ADS  Google Scholar 

  23. L.J. Zuo, Z.W. Gu, T. Ye, J. Am. Chem. Soc. 137, 2674 (2015)

    Article  Google Scholar 

  24. X. Chen, B. Jia, J.K. Saha, B. Cai, N. Stokes, Q. Qiao, NanoLett 12, 2187 (2012)

    Article  ADS  Google Scholar 

  25. M.W. Chu, V. Myroshnychenko, C.H. Chen, J.P. Deng, C.Y. Mou, F.J.G. De Abajo, NanoLett. 9, 399 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Science and Technology of Guizhou Province ([2018]1084), the Department of education of Guizhou Province ([2016]155 ), Scientific research project of Guizhou Min Zu University ([2018]577-YB17), National Natural Science Foundation of China (61504031), National Natural Science Foundation of China (62075044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.R., Wang, D.C., Ren, D.S. et al. Improving the electroluminescence of Si nanocrystal via black silicon and silver surface plasmons. Appl. Phys. A 127, 154 (2021). https://doi.org/10.1007/s00339-021-04291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04291-5

Keywords

Navigation