Skip to main content
Log in

A shape optimization problem for the first mixed Steklov–Dirichlet eigenvalue

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider a shape optimization problem for the first mixed Steklov–Dirichlet eigenvalues of domains bounded by two balls in two-point homogeneous space. We give a geometric proof which is motivated by Newton’s shell theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agranovich, M.S.: On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain. Russ. J. Math. Phys. 13, 239–244 (2006)

    Article  MathSciNet  Google Scholar 

  2. Aithal, A.R., Santhanam, G.: Sharp upper bound for the first non-zero Neumann eigenvalue for bounded domains in rank-\(1\) symmetric spaces. Trans. Am. Math. Soc. 348(10), 3955–3965 (1996)

    Article  MathSciNet  Google Scholar 

  3. Ashbaugh, M.S., Benguria, R.D.: Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature. J. Lond. Math. Soc. (2) 52(2), 402–416 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bérard-Bergery, L., Bourguignon, J.-P.: Laplacians and Riemannian submersions with totally geodesic fibres. Ill. J. Math. 26, 181–200 (1982)

    Article  MathSciNet  Google Scholar 

  5. Binoy, Santhanam, G.: Sharp upper bound and a comparison theorem for the first nonzero Steklov eigenvalue. J. Raman. Math. Soc. 29, 133–154 (2014)

  6. Brehm, U.: The shape invariant of triangles and trigonometry in two-point homogeneous spaces. Geom. Dedic. 33, 59–76 (1990)

    Article  MathSciNet  Google Scholar 

  7. Brock, F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81, 69–71 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: Weinstock inequality in higher dimensions. arXiv:1710.04587

  9. Castillon, P., Ruffini, B.: A spectral characterization of geodesic balls in non-compact rank one symmetric spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19(4), 1359–1388 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chavel, I.: Lowest-eigenvalue inequalities, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979). In: Proc. Sympos. Pure Math., vol. XXXVI, pp. 79–89. American Mathematical Society, Providence (1980)

  11. Escobar, J.F.: An isoperimetric inequality and the first Steklov eigenvalue. J. Funct. Anal. 165, 101–116 (1999)

    Article  MathSciNet  Google Scholar 

  12. Fraser, A., Schoen, R.: Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348, 146–162 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ftouhi, I.: Where to place a spherical obstacle so as to maximize the first Steklov eigenvalue. ffhal-02334941 (2019)

  14. Hartman, P.: Ordinary differential equations, In: Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA; MR0658490 (83e:34002)], With a foreword by Peter Bates

  15. Hersch, J., Payne, L.E.: Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff’s type. Z. Angew. Math. Phys. 19, 802–817 (1968)

    Article  MathSciNet  Google Scholar 

  16. Hsiang, W.-Y.: On the laws of trigonometries of two-point homogeneous spaces. Ann. Glob. Anal. Geom. 7, 29–45 (1989)

    Article  MathSciNet  Google Scholar 

  17. Izmestiev, I., Tabachnikov, S.: Ivory’s theorem revisited. J. Integr. Syst. 2(xyx006), 36 (2017)

    Google Scholar 

  18. Karcher, H.: Riemannian comparison constructions, Global differential geometry. In: Chern, S.S. (ed.) MAA Stud. Math., vol. 7, pp. 170–222. Mathematical Association of America, Washington (1989)

    Google Scholar 

  19. Kozlov, V.V.: Newton and Ivory attraction theorems in spaces of constant curvature. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 68, 43–47 (2000)

    MathSciNet  Google Scholar 

  20. Newton, I.: Philosophiae Naturalis Principia Mathematica, vol. I. Harvard University Press, Cambridge. Reprinting of the third edition (1726) with variant readings. Assembled and edited by Alexandre Koyré and I, Bernard Cohen with the assistance of Anne Whitman (1972)

  21. Petersen, P.: Riemannian geometry, 2nd edn. In: Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)

  22. Santhanam, G., Verma, S.: On eigenvalue problems related to the Laplacian in a class of doubly connected domains. arXiv:1803.05750

  23. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  24. Stekloff, W.: Sur les problèmes fondamentaux de la physique mathématique (suite et fin). Ann. Sci. École Norm. Sup. (3) 19, 455–490 (1902)

    Article  MathSciNet  Google Scholar 

  25. Todhunter, I.: Spherical Trigonometry, for the Use of Colleges and Schools: With Numerous Examples. CreateSpace Independent Publishing Platform (1802), Scotts Valley (2014)

  26. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

  27. Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish Inc., Houston (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to express his gratitude to Jaigyoung Choe for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hwi Seo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by NRF-2018R1A2B6004262 and NRF-2020R1A4A3079066.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, DH. A shape optimization problem for the first mixed Steklov–Dirichlet eigenvalue. Ann Glob Anal Geom 59, 345–365 (2021). https://doi.org/10.1007/s10455-021-09756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-021-09756-7

Keywords

Mathematics Subject Classification

Navigation