Skip to main content

Advertisement

Log in

Transition-Metal (Fe, Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Electrochemical water splitting is a fascinating technology for sustainable hydrogen production, and electrocatalysts are essential to accelerate the sluggish hydrogen and oxygen evolution reactions (HER and OER). Transition-metal-based electrocatalysts have attracted enormous interests due to the abundant resources, low cost, and comparable catalytic performance to noble metals. Among these studies, fibrous materials possess distinct advantages, such as unique structure, high active surface area, and fast electron transport. Herein, the most recent progress of nanofiber electrocatalysts on synthesis and application in HER and OER is summarized, with emphasis on iron-, cobalt-, and nickel-based materials. Moreover, the challenge and prospects of fibrous-structured electrocatalysts on water splitting is provided.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Reproduced with permission from Ref. [22]; Copyright 2019 Wiley–VCH. f Schematic illustration of the sequential fabrication step for the Co/CoP@NC nanofibers. g PXRD of Co/CoP@NC nanofibers. h TEM images of Co/CoP@NC nanofibers. f–h Reproduced with permission from Ref. [27]; Copyright 2018 Elsevier

Fig. 3

Reproduced with permission from Ref. [28]; Copyright 2018 Wiley. g Preparation of a representative composite SFCNF/Co1-xS@CoN as electrode material for overall water splitting. h HRTEM images of composite SFCNF/Co1-xS@CoN. i LSV curves in 1.0 M of KOH electrolyte. j XPS spectra of Co 2p of composite SFCNF/Co1-xS@CoN. g-j Reproduced with permission from Ref. [42]; Copyright 2020 Wiley

Fig. 4

Reproduced with permission from Ref. [49]; Copyright 2020 Elsevier. b Schematic illustration of the fabrication process of the PO-Ni/Ni–N-CNFs catalyst. b Reproduced with permission from Ref. [52]; Copyright 2018 Elsevier. c Schematic illustration of the “impregnation-carbonization-acidification” process for scalable fabrication of Co SA@NCF/CNF film as flexible air cathode in a wearable Zn-air battery. d Digital photos of highly flexible Co SA@NCF/CNF under rolling, bending, and twisting state. c, d Reproduced with permission from Ref. [59]; Copyright 2019 Wiley

Fig. 5

Reproduced with permission from Ref. [85]; Copyright 2020 American Chemical Society. d Schematic diagram illustration of the preparation processes for the CuCo2S4 NSs@N-CNFs film. e OER polarization curves of CuCo2S4 NSs@N-CNFs film and the as-prepared four samples. d, e Reproduced with permission from Ref. [88]; Copyright 2019 Wiley–VCH

Fig. 6

Reproduced with permission from Ref. [91]; Copyright 2017 Springer Nature. f Schematic illustration of the synthesis of heteroatom-doped carbon nanofiber derived from core–shell PAN@ZIF-67 fiber. SEM images of g PAN/PVP/Co(acac)2 fiber, h PAN@ZIF-67–400 fiber, i PAN@ZIF-67–80 fiber, and j PAN/ZIF-67 fiber. Insets in (g, h) are digital photos, (i, j) are enlarged SEM images. k Schematic illustration of morphology evolution in PAN@ZIF-67 fiber. f–k Reproduced with permission from Ref. [101]; Copyright 2018 Wiley

Fig. 7

Reproduced with permission from Ref. [108]; Copyright 2018 American Chemical Society

Similar content being viewed by others

References

  1. Lei Z, Wang T, Zhao B, Cai W, Liu Y, Jiao S, Li Q, Cao R, Liu M. Recent progress in electrocatalysts for acidic water oxidation. Adv Energy Mater. 2020;10:2000478.

    Article  CAS  Google Scholar 

  2. Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Active site engineering in porous electrocatalysts. Adv Mater. 2020;2020:2002435.

    Article  Google Scholar 

  3. Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S. Defect engineering for fuel-cell electrocatalysts. Adv Mater. 2020;32:1907879.

    Article  CAS  Google Scholar 

  4. Jiao Y, Zheng Y, Jaroniec M, Qiao S. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44:2023.

    Article  Google Scholar 

  5. Turner J. A. sustainable hydrogen production. Science. 2004;305:972.

    Article  CAS  Google Scholar 

  6. Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics. 2012;6:511.

    Article  CAS  Google Scholar 

  7. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355:146.

    Article  Google Scholar 

  8. Lee Y, Suntivich J, May KJ, Perry EE, ShaoHorn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett. 2012;3:399.

    Article  CAS  Google Scholar 

  9. Chen Z, Duan X, Wei W, Wang S, Ni B. Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy. 2020;78:105392.

    Article  CAS  Google Scholar 

  10. Zhu Y, Lin Q, Zhong Y, Tahini HA, Shao Z, Wang H. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ Sci. 2020;13:3361–92.

    Article  CAS  Google Scholar 

  11. Guo X, Chen C, Zhang Y, Xu Y, Pang H. The application of transition metal cobaltites in electrochemistry. Energy Storage Mater. 2019;23:439.

    Article  Google Scholar 

  12. Li Y, Dong Z, Jiao L. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv Energy Mater. 2019;10:1902104.

    Article  CAS  Google Scholar 

  13. Jiang S, Li J, Fang J, Wang X. Fibrous-structured freestanding electrodes for oxygen electrocatalysis. Small. 2019;2019:1903760.

    Google Scholar 

  14. Chen X, Ali I, Song L, Song P, Zhang Y, Maria S, Nazmus S, Yang W, Dhakal HN, Li H, Sain M, Ramakrishna S. A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective. Renew Sustain Energy Rev. 2020;134:110085.

    Article  CAS  Google Scholar 

  15. Chen Z, Duan X, Wei W, Wang S, Ni B. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A. 2019;7:14971.

    Article  CAS  Google Scholar 

  16. Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32:1806326.

    Article  CAS  Google Scholar 

  17. Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater. 2016;28:9266.

    Article  CAS  Google Scholar 

  18. Yang L, Zhao X, Yang R, Zhao P, Li Y, Yang P, Wang J, Astruc D. In-situ growth of carbon nanotubes on Ni/NiO nanofibers as efficient hydrogen evolution reaction catalysts in alkaline media. Appl Surf Sci. 2019;491:294.

    Article  CAS  Google Scholar 

  19. Wang P, Zhang X, Wei Y, Yang P. Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance. Int J Hydrogen Energy. 2019;44:19752.

    Google Scholar 

  20. Meixuan L, Yun Z, Huiyuan W, Ce W, Nicola P, Xiaofeng L. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv Energy Mater. 2019;9:1803185.

    Article  CAS  Google Scholar 

  21. Cardoso DSP, Amaral L, Santos DMF, Šljukić B, Sequeira CAC, Macciò D, Saccone A. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. Int J Hydrogen Energy. 2015;40:4295.

    Article  CAS  Google Scholar 

  22. Li T, Li S, Liu Q, Yin J, Sun D, Zhang M, Xu L, Tang Y, Zhang Y. Immobilization of Ni3Co nanoparticles into N-doped carbon nanotube/nanofiber integrated hierarchically branched architectures toward efficient overall water splitting. Adv Sci. 2019;7:1902371.

    Article  CAS  Google Scholar 

  23. Aftab F, Duran H, Kirchhoff K, Zaheer M, Iqbal B, Saleem M, Arshad SN. A facile synthesis of FeCo nanoparticles encapsulated in hierarchical N-doped carbon nanotube/nanofiber hybrids for overall water splitting. Chem Cat Chem. 2019;12:932.

    Google Scholar 

  24. Shi Q, Liu Q, Ma Y, Fang Z, Liang Z, Shao G, Tang B, Yang W, Qin L, Fang X. High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv Energy Mater. 2020;10:1903854.

    Article  CAS  Google Scholar 

  25. Gebremariam TT, Chen F, Jin Y, Wang Q, Wang J, Wang J. Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn-air batteries and water splitting. Catal Sci Technol. 2019;9:2532.

    Article  CAS  Google Scholar 

  26. Li T, Luo G, Liu K, Li X, Sun D, Xu L, Li Y, Tang Y. Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube-grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv Funct Mater. 2018;28:1805828.

    Article  CAS  Google Scholar 

  27. Li Y, Li H, Cao K, Jin T, Wang X, Sun H, Ning J, Wang Y, Jiao L. Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Storage Mater. 2017;12:44.

    Article  CAS  Google Scholar 

  28. Wang M, Ye C, Liu H, Xu M, Bao S. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew Chem Int Ed. 2018;57:1963.

    Article  CAS  Google Scholar 

  29. Surendran S, Shanmugapriya S, Zhu P, Yan C, Vignesh RH, Lee YS, Zhang X, Selvan RK. Hydrothermally synthesised NiCoP nanostructures and electrospun N-doped carbon nanofiber as multifunctional potential electrode for hybrid water electrolyser and supercapatteries. Electrochim Acta. 2018;296:1083.

    Article  CAS  Google Scholar 

  30. Mo Q, Zhang W, He L, Yu X, Gao Q. Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Appl Catal B. 2018;244:620.

    Article  CAS  Google Scholar 

  31. Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Selvan RK. Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv Energy Mater. 2018;8:1800553.

    Article  CAS  Google Scholar 

  32. Wang L, Liu X, Luo J, Duan X, Crittenden J, Liu C, Zhang S, Pei Y, Zeng Y, Duan X. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew Chem Int Ed. 2017;56:7610.

    Article  CAS  Google Scholar 

  33. Wang J, Yan M, Zhao K, Liao X, Wang P, Pan X, Yang W, Mai L. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv Mater. 2016;29:1604464.

    Article  CAS  Google Scholar 

  34. Wang C, Wang T, Liu J, Zhou Y, Yu D, Cheng J-K, Han F, Li Q, Chen J, Huang Y. Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy Environ Sci. 2018;11:2467.

    Article  CAS  Google Scholar 

  35. Zhu Y, Song L, Song N, Li M, Wang C, Lu X. Bifunctional and efficient CoS2-C@MoS2 core-shell nanofiber electrocatalyst for water splitting. ACS Sustain Chem Eng. 2019;7:2899.

    Article  CAS  Google Scholar 

  36. Wei L, Luo J, Jiang L, Qiu L, Zhang J, Zhang D, Xu P, Yuan D. CoSe2 nanoparticles grown on carbon nanofibers derived from bacterial cellulose as an efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2018;43:20704.

    Article  CAS  Google Scholar 

  37. Gu H, Fan W, Liu T. Phosphorus-doped NiCo2S4 nanocrystals grown on electrospun carbon nanofibers as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2017;2:277.

    Article  CAS  Google Scholar 

  38. Xu J, Rong J, Qiu F, Zhu Y, Mao K, Fang Y, Yang D, Zhang T. Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J Colloid Interface Sci. 2019;555:294.

    Article  CAS  Google Scholar 

  39. Ranjith KS, Kwak CH, Ghoreishian SM, Im JS, Huh YS, Han Y. Ultrathin rgo-wrapped free-standing bimetallic CoNi2S4-carbon nanofibers: an efficient and robust bifunctional electrocatalyst for water splitting. Nanotechnology. 2020;31:27.

    Article  CAS  Google Scholar 

  40. Zong W, Lian R, He G, Guo H, Ouyang Y, Wang J, Lai F, Miao YE, Rao D, Brett D, Liu T. Vacancy engineering of group VI anions in NiCo2A4 (a = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochim Acta. 2019;333:135515.

    Article  CAS  Google Scholar 

  41. Sakthivel M, Ramaraj S, Chen S-M, Dinesh B, Ramasamy HV, Lee YS. Entrapment of bimetallic CoFeSe2 nanosphere on functionalized carbon nanofiber for selective and sensitive electrochemical detection of caffeic acid in wine samples. Anal Chim Acta. 2018;1006:22.

    Article  CAS  Google Scholar 

  42. Guo D, Wang J, Zhang L, Chen XA, Wan Z, Xi B. Strategic atomic layer deposition and electrospinning of cobalt sulfide/nitride composite as efficient bifunctional electrocatalysts for overall water splitting. Small. 2020;16:2002432.

    Article  CAS  Google Scholar 

  43. Fang Z, Peng L, Qian Y, Zhang X, Xie Y, Cha JJ, Yu G. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc. 2018;140:5241.

    Article  CAS  Google Scholar 

  44. Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy. 2016;1:16184.

    Article  CAS  Google Scholar 

  45. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater. 2011;10:780.

    Article  CAS  Google Scholar 

  46. Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew Chem Int Ed. 2013;52:2474.

    Article  CAS  Google Scholar 

  47. Suen N, Hung S, Quan Q, Zhang N, Xu Y, Chen H. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem Soc Rev. 2017;46:303.

    Article  Google Scholar 

  48. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2:65.

    Article  CAS  Google Scholar 

  49. Sun P, Zhang D, He M, Zuo Z, Huang N, Lv X, Sun Y, Sun X. Gas-phase synthesis of metal (M=Co, Cu, Mn, Ni, Fe) nanoparticles on N-doped carbon nanofibers as excellent oxygen electrocatalyst. Electrochim Acta. 2020;337:135848.

    Article  CAS  Google Scholar 

  50. Ji D, Fan L, Li L, Mao N, Qin X, Peng S, Ramakrishna S. Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon. 2018;142:379.

    Article  CAS  Google Scholar 

  51. Li H, An M, Zhao Y, Pi S, Li C, Sun W, Wang H. Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery. Appl Surf Sci. 2019;478:560.

    Article  CAS  Google Scholar 

  52. Wu Z, Ji W, Hu B, Liang H, Xu X, Yu Z, Li B, Yu S. Partially oxidized Ni nanoparticles supported on Ni-N Co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy.2018;51:286.

    Article  CAS  Google Scholar 

  53. Li M, Zhu Y, Wang H, Wang C, Pinna N, Lu X. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv Energy Mater. 2019;9:1803185.

    Article  CAS  Google Scholar 

  54. Ji D, Sun J, Tian L, Chinnappan A, Zhang T, Jayathilaka WADM, Gosh R, Baskar C, Zhang Q, Ramakrishna S. Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis. Adv Funct Mater. 2020;30:1910568.

    Article  CAS  Google Scholar 

  55. Zhao Y, Zhang J, Wu W, Guo X, Xiong P, Liu H, Wang G. Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. Nano Energy. 2018;54:129.

    Article  CAS  Google Scholar 

  56. Zhang Z, Gao D, Xue D, Liu Y, Liu P, Zhang J, Qian J. Co and CeO2 Co-decorated N-doping carbon nanofibers for rechargeable Zn-air batteries. Nanotechnology. 2019;30:395401.

    Article  CAS  Google Scholar 

  57. Lei C, Chen H, Cao J, Jia Y, Qiu M, Xia Y, Yuan C, Yang B, Li Z, Zhang X, Lei L, Abbott J, Zhong Y, Xia X, Wu G, He Q, Hou Y. FeN4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv Energy Mater. 2018;8:1801912.

    Article  CAS  Google Scholar 

  58. Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, Li D, Zhan S, Yuan J, Wang H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew Chem Int Ed. 2019;58:13466.

    Article  CAS  Google Scholar 

  59. Ji D, Fan L, Li L, Peng S, Yu D, Song J, Ramakrishna S, Guo S. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv Mater. 2019;31:1808267.

    Article  CAS  Google Scholar 

  60. Fu Y, Yu H, Jiang C, Zhang T, Zhan R, Li X, Li J, Tian J, Yang R. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv Funct Mater. 2018;28:1705094.

    Article  CAS  Google Scholar 

  61. Wan W, Liu X, Li H, Peng X, Xi D, Luo J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl Catal B. 2019;240:193.

    Article  CAS  Google Scholar 

  62. Feng C, Guo Y, Xie Y, Cao X, Li S, Zhang L, Wang W, Wang J. Bamboo-like nitrogen-doped porous carbon nanofibers encapsulated nickel-cobalt alloy nanoparticles composite material derived from the electrospun fiber of a bimetal-organic framework as efficient bifunctional oxygen electrocatalysts. Nanoscale. 2020;12:5942.

    Article  CAS  Google Scholar 

  63. Sankar SS, Karthick K, Sangeetha K, Karmakar A, Kundu S. Polymeric nanofibers containing CoNi-based zeolitic imidazolate framework nanoparticles for electrocatalytic water oxidation. ACS Appl Nano Mater. 2020;3:4274.

    Article  CAS  Google Scholar 

  64. Fu K, Wang Y, Mao L, Yang X, Peng W, Jin J, Yang S, Li G. Rational assembly of hybrid carbon nanotubes grafted on the carbon nanofibers as reliable and robust bifunctional catalyst for rechargeable zinc-air battery. J Power Sourc. 2019;421:68.

    Article  CAS  Google Scholar 

  65. Li C, Wu M, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B. 2019;244:150.

    Article  CAS  Google Scholar 

  66. Yang L, Feng S, Xu G, Wei B, Zhang L. Electrospun mof-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustain Chem Eng. 2019;7:5462.

    Article  CAS  Google Scholar 

  67. Kang S, Ham K, Lee J. Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochim Acta. 2020;353:136521.

    Article  CAS  Google Scholar 

  68. Ma Y, Zang W, Sumboja A, Mao L, Liu X, Tan M, Pennycook SJ, Kou Z, Liu Z, Li X, Wang J. Hollow structure engineering of FeCo alloy nanoparticles electrospun in nitrogen-doped carbon enables high performance flexible all-solid-state zinc–air batteries. Sustain Energy Fuels. 2020;4:1747.

    Article  CAS  Google Scholar 

  69. Wei P, Sun X, Liang Q, Li X, He Z, Hu X, Zhang J, Wang M, Li Q, Yang H, Han J, Huang Y. Enhanced oxygen evolution reaction activity by encapsulating NiFe alloy nanoparticles in nitrogen-doped carbon nanofibers. ACS Appl Mater Interfaces. 2020;12:31503–13.

    Article  CAS  Google Scholar 

  70. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem. 2010;3:79.

    Article  CAS  Google Scholar 

  71. Li B, Ge X, Goh FWT, Hor TSA, Geng D, Du G, Liu Z, Zhang J, Liu X, Zong Y. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale. 2015;7:1830.

    Article  CAS  Google Scholar 

  72. Khalily MA, Patil B, Yilmaz E, Uyar T. Atomic layer deposition of Co3O4 nanocrystals on N-doped electrospun carbon nanofibers for oxygen reduction and oxygen evolution reactions. Nanoscale Adv. 2018;1:1224.

    Article  Google Scholar 

  73. Aljabour A. Long-lasting electrospun Co3O4 nanofibers for electrocatalytic oxygen evolution reaction. Chem Select. 2020;5:7482.

    CAS  Google Scholar 

  74. Liu L, Guo H, Hou Y, Wang J, Fu L, Chen J, Liu H, Wang J, Wu Y. 3D hierarchical porous Co3O4 nanotube network as efficient cathode for rechargeable lithium-oxygen batteries. J Mater Chem A. 2017;5:14673.

    Article  CAS  Google Scholar 

  75. Li T, Li S, Liu Q, Tian Y, Zhang Y, Fu G, Tang Y. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustain Chem Eng. 2019;7:17950.

    Article  CAS  Google Scholar 

  76. Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett. 2017;17:7989.

    Article  CAS  Google Scholar 

  77. Alegre C, Busacca C, Blasi AD, Blasi OD, Aricò AS, Antonucci V, Baglio V. Insights on the electrocatalysis of oxygen on bifunctional nickel-cobaltite spinel catalyst. Chem Electro Chem. 2019;7:124.

    Google Scholar 

  78. Li T, Lv Y, Su J, Wang Y, Yang Q, Zhang Y, Zhou J, Xu L, Sun D, Tang Y. Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv Sci. 2017;4:1700226.

    Article  CAS  Google Scholar 

  79. Wu L, Shi L, Zhou S, Zhao J, Miao X, Guo J. Direct growth of CoFe2 alloy strongly coupling and oxygen-vacancy-ich CoFe2O4 porous hollow nanofibers: an efficient electrocatalyst for oxygen evolution reaction. Energy Technol. 2018;6:2350.

    Article  CAS  Google Scholar 

  80. Zhang Z, Zhang J, Wang T, Li Z, Yang G, Bian H, Li J, Gao D. Durable oxygen evolution reaction of one dimensional spinel CoFe2O4 nanofibers fabricated by electrospinning. RSC Adv. 2018;8:5338.

    Article  CAS  Google Scholar 

  81. Zong W, Rao D, Guo H, Ouyang Y, Miao YE, Wang W, Wang J, Lai F, Liu T. Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe2O4 nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale. 2020;12:10977.

    Article  CAS  Google Scholar 

  82. Wang M, Zhang C, Meng T, Pu Z, Jin H, He D, Zhang J, Mu S. Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J Power Sourc. 2018;413:367.

    Article  CAS  Google Scholar 

  83. Lin F, Dong Z, Yao Y, Yang L, Fang F, Jiao L. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv Energy Mater. 2020;10:2002176.

    Article  CAS  Google Scholar 

  84. Dong Z, Lin F, Yao Y, Jiao L. Crystalline Ni(OH)2/amorphous nimoox mixed-catalyst with Pt-like performance for hydrogen production. Adv Energy Mater. 2019;9:1902703.

    Article  CAS  Google Scholar 

  85. Zhang Z, Liang X, Li J, Qian J, Liu Y, Yang S, Wang Y, Gao D, Xue D. Interfacial engineering of NiO/NiCo2O4 porous nanofibers as efficient bifunctional catalysts for rechargeable zinc-air batteries. ACS Appl Mater Interfaces. 2020;12:21661.

    Article  CAS  Google Scholar 

  86. Liu W, Zhang J, Bai Z, Jiang G, Li M, Feng K, Yang L, Ding Y, Yu T, Chen Z, Yu A. Controllable urchin-like NiCo2O4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv Funct Mater. 2018;28:1706675.

    Article  CAS  Google Scholar 

  87. Wang H, Tang C, Wang B, Li B, Zhang Q. Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-air batteries. Adv Mater. 2017;29:1702327.

    Article  CAS  Google Scholar 

  88. Pan Z, Chen H, Yang J, Ma Y, Zhang Q, Kou Z, Ding X, Pang Y, Zhang L, Gu Q, Yan C, Wang J. CuCo2S4 nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn-air batteries. Adv Sci. 2019;6:1900628.

    Article  CAS  Google Scholar 

  89. Ranjith KS, Kwak CH, Ghoreishian SM, Im JS, Huh YS, Han Y. Ultrathin rGO-wrapped free-standing bimetallic CoNi2S4-carbon nanofibers: an efficient and robust bifunctional electrocatalyst for water splitting. Nanotechnology. 2020;31:275402.

    Article  CAS  Google Scholar 

  90. Li G, Hou S, Gui L, Feng F, Zhang D, He B, Zhao L. Carbon quantum dots decorated Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite nanofibers for boosting oxygen evolution reaction. Appl Catal B. 2019;257:117919.

    Article  CAS  Google Scholar 

  91. Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun. 2017;8:14586.

    Article  CAS  Google Scholar 

  92. Bu Y, Gwon O, Nam G, Jang H, Kim S, Zhong Q, Cho J, Kim G. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano. 2017;11:11594.

    Article  CAS  Google Scholar 

  93. Lee D, Lee H, Gwon O, Kwon O, Jeong HY, Kim G, Lee S. Monolithic heteronanomat paper air cathodes toward origami-foldable/rechargeable Zn-air batteries. J Mater Chem A. 2019;7:24041.

    Article  Google Scholar 

  94. Zhang L, Zhu H, Hao J, Wang C, Wen Y, Li H, Lu S, Duan F, Du M. Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. Electrochim Acta. 2019;327:135033.

    Article  CAS  Google Scholar 

  95. Wan M, Zhu H, Zhang S, Jin H, Wen Y, Wang L, Zhang M, Du M. Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution. Electrochim Acta. 2018;279:301.

    Article  CAS  Google Scholar 

  96. Bu Y, Nam G, Kim S, Choi K, Zhong Q, Lee J, Qin Y, Cho J, Kim G. A tailored bifunctional electrocatalyst: boosting oxygen reduction/evolution catalysis via electron transfer between N-doped graphene and perovskite oxides. Small. 2018;14:1802767.

    Article  CAS  Google Scholar 

  97. Zhang X, Gong Y, Li S, Sun C. Porous perovskite La0.6Sr0.4Co0.8Mn0.2O3 nanofibers loaded with RuO2 nanosheets as an efficient and durable bifunctional catalyst for rechargeable Li–O2 batteries. ACS Catal. 2017;7:7737.

    Article  CAS  Google Scholar 

  98. Li Z, Li J, Ao X, Sun H, Wang H, Yuen M, Wang C. Conductive metal–organic frameworks endow high-efficient oxygen evolution of La0.6Sr0.4Co0.8Fe0.2O3 perovskite oxide nanofibers. Electrochim Acta. 2020;334:135638.

    Article  CAS  Google Scholar 

  99. Xing J, Lin F, Huang L, Si Y, Wang Y, Jiao L. Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting. Chin J Catal. 2019;40:1352.

    Article  CAS  Google Scholar 

  100. Xing J, Li Y, Guo S, Jin T, Li H, Wang Y, Jiao L. Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting. Electrochim Acta. 2019;298:305.

    Article  CAS  Google Scholar 

  101. Zhao Y, Lai Q, Zhu J, Zhong J, Tang Z, Luo Y, Liang Y. Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small. 2018;14:1704207.

    Article  CAS  Google Scholar 

  102. Ji D, Peng S, Fan L, Li L, Qin X, Ramakrishna S. Thin MoS2 nanosheets grafted MOFs derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J Mater Chem A. 2017;5:23898.

    Article  CAS  Google Scholar 

  103. Yao X, Li J, Zhu Y, Li L, Zhang W. Designed synthesis of three-dimensional callistemon-like networks structural multifunctional electrocatalyst: graphitic-carbon-encapsulated Co nanoparticles/N-doped carbon nanotubes@carbon nanofibers for Zn-air batteries application. Compos B.2020;193:108058.

    Article  CAS  Google Scholar 

  104. Zhang W, Yao X, Zhou S, Li X, Li L, Yu Z, Gu L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small. 2018;14:1800423.

    Article  CAS  Google Scholar 

  105. Li Q, Zhao J, Wu M, Li C, Han L, Liu R. Hierarchical porous N-doped carbon nanofibers supported Fe3C/Fe nanoparticles as efficient oxygen electrocatalysts for Zn-air batteries. Chem Select. 2019;4:722.

    CAS  Google Scholar 

  106. Qichen W, Yongpeng L, Zhiyan C, Nan W, Yaobing W, Bing W, Yingde W. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J Mater Chem A. 2018;6:516.

    Article  Google Scholar 

  107. Zhao Y, Zhang J, Guo X, Fan H, Wu W, Liu H, Wang G. Fe3C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. J Mater Chem A. 2017;5:19672.

    Article  CAS  Google Scholar 

  108. Cho S, Yoon KR, Shin K, Jung J, Kim C, Cheong JY, Youn D, Song SW, Henkelman G, Kim I. Synergistic coupling of metallic cobalt nitride nanofibers and IrOx nanoparticle catalysts for stable oxygen evolution. Chem Mater. 2018;30:5941.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52025013, 51622102), Ministry of Science and Technology of China MOST (2018YFB1502101), the 111 Project (B12015), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Jiao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wang, T. & Jiao, L. Transition-Metal (Fe, Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting. Adv. Fiber Mater. 3, 210–228 (2021). https://doi.org/10.1007/s42765-021-00065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00065-z

Keywords

Navigation