Skip to main content
Log in

The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation

  • Original Reearch
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper develops a method for the numerical solution of the nonlinear regularized long wave equation. This method discretizes the unknown solution in two main schemes. The time discretization is accomplished by means of an implicit method based on the \(\theta \)-weighted and finite difference methods, while the spatial discretization is described with the help of the finite difference scheme derived from the local radial basis function method. The advantage of the local collocation method is based only the discretization nodes located in each sub-domain, requiring to be considered when obtaining the approximate solution at every node. It also tackles the ill-conditioning problem derived from global collocation method. Besides, the stability analysis of the proposed method is analyzed and the accuracy of it is examined with \(L_{\infty }\) and \(L_2\) norm errors. At the end, the results obtained by the proposed method are compared with the methods given in previous works and it indicates an improvement in comparison with previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ablowitz, M.J., Ablowitz, M., Clarkson, P., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  2. Nagashima, H.: Experiment on solitary waves in the nonlinear transmission line described by the equation (remark: Graphics omitted.). J. Phys. Soc. Jpn. 47(4), 1387 (1979)

    Article  Google Scholar 

  3. Jeffrey, A., Xu, S.: Travelling wave solutions to certain non-linear evolution equations. Int. J. Non Linear Mech. 24(5), 425 (1989)

    Article  Google Scholar 

  4. Kakutani, T., Ono, H.: Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Jpn. 26(5), 1305 (1969)

    Article  Google Scholar 

  5. Wang, M., Li, X., Zhang, J.: The (G\(^\prime \) G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417 (2008)

    Article  MathSciNet  Google Scholar 

  6. Mohanty, R., Gopal, V.: High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Appl. Math. Comput. 218(8), 4234 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Garshasbi, M., Khakzad, M.: The RBF collocation method of lines for the numerical solution of the CH-\(\gamma \) equation. J. Adv. Res. Dyn. Cont. Syst. 4, 65–83 (2015)

    MathSciNet  Google Scholar 

  8. Mohanty, R.K., Khurana, G.: A new high accuracy cubic spline method based on half-step discretization for the system of 1D non-linear wave equations. Eng. Comput. 36(3), 930 (2019)

    Article  Google Scholar 

  9. Dehghan, Z., Rashidinia, J.: Solution of Kawahara equation using a predictor-and RBF-QR method. J. Math. Model. (2020). https://doi.org/10.22124/JMM.2020.17221.1497

    Article  Google Scholar 

  10. Mokhtari, R., Mohammadi, M.: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181(7), 1266 (2010)

    Article  MathSciNet  Google Scholar 

  11. Haq, S., Ali, A., et al.: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223(2), 997 (2009)

    Article  MathSciNet  Google Scholar 

  12. Abdulloev, K.O., Bogolubsky, I., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56(6), 427 (1976)

    Article  MathSciNet  Google Scholar 

  13. Peregrine, D.: Calculations of the development of an undular bore. J. Fluid Mech. 25(2), 321 (1966)

    Article  Google Scholar 

  14. Bona, J., Bryant, P.J.: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 73, pp. 391–405. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  15. Na, S.: New exact travelling wave solutions for the Kawahara and modified Kawahara equations. Chaos Solitons Fractals 19(1), 147 (2004)

    Article  MathSciNet  Google Scholar 

  16. Yamamoto, Y., Takizawa, É.I.: On a solution on non-linear time-evolution equation of fifth order. J. Phys. Soc. Jpn. 50(5), 1421 (1981)

    Article  Google Scholar 

  17. Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method. Chaos Solitons Fractals 37(4), 1193 (2008)

    Article  MathSciNet  Google Scholar 

  18. Korkmaz, A., Dağ, İ.: Numerical simulations of boundary-forced RLW equation with cubic B-spline-based differential quadrature methods. Arab. J. Sci. Eng. 38(5), 1151 (2013)

    Article  MathSciNet  Google Scholar 

  19. Esen, A., Kutluay, S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174(2), 833 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Saka, B., Dag, I.: A collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab. J. Sci. Eng. 30(1A), 39 (2005)

    MathSciNet  Google Scholar 

  21. Saka, B., Dağ, İ., Doğan, A.: Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. Int. J. Comput. Math. 81(6), 727 (2004)

    Article  MathSciNet  Google Scholar 

  22. Dag, I., Dogan, A., Saka, B.: B-spline collocation methods for numerical solutions of the RLW equation. Int. J. Comput. Math. 80(6), 743 (2003)

    Article  MathSciNet  Google Scholar 

  23. Dağ, İ., Saka, B., Irk, D.: Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190(1–2), 532 (2006)

    Article  MathSciNet  Google Scholar 

  24. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8(4), 381 (1998)

    Article  MathSciNet  Google Scholar 

  25. Micchelli, C.A.: Approximation Theory and Spline Functions, pp. 143–145. Springer, Berlin (1984)

    Book  Google Scholar 

  26. Madych, W., Nelson, S.: Multivariate interpolation and conditionally positive definite functions. II. Math. Comput. 54(189), 211 (1990)

    Article  MathSciNet  Google Scholar 

  27. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905 (1971)

    Article  Google Scholar 

  28. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127 (1990)

    Article  MathSciNet  Google Scholar 

  29. Kansa, E., Hon, Y.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39(7–8), 123 (2000)

    Article  MathSciNet  Google Scholar 

  30. Tolstykh, A., Shirobokov, D.: On using radial basis functions in a “finite difference model” with applications to elasticity problems. Comput. Mech. 33(1), 68 (2003)

    Article  MathSciNet  Google Scholar 

  31. Abbaszadeh, M., Dehghan, M.: Reduced order modeling of time-dependent incompressible Navier–Stokes equation with variable density based on a local radial basis functions-finite difference (LRBF-FD) technique and the POD/DEIM method. Comput. Methods Appl. Mech. Eng. 364, 112914 (2020)

    Article  MathSciNet  Google Scholar 

  32. Dehghan, M., Shafieeabyaneh, N.: Local radial basis function-finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher-Kolmogorov equations. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00877-z

    Article  Google Scholar 

  33. Dehghan, M., Abbaszadeh, M.: The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations. Eng. Anal. Bound. Elem. 78, 49 (2017)

    Article  MathSciNet  Google Scholar 

  34. Nikan, O., Golbabai, A., Nikazad, T.: Solitary wave solution of the nonlinear KdV–Benjamin–Bona–Mahony–Burgers model via two meshless methods. Eur. Phys. J. Plus 134(7), 367 (2019)

    Article  Google Scholar 

  35. Avazzadeh, Z., Nikan, O., Machado, J.A.T.: Solitary wave solutions of the generalized Rosenau–KdV–RLW equation. Mathematics 8(9), 1601 (2020)

    Article  Google Scholar 

  36. Can, N.H., Nikan, O., Rasoulizadeh, M.N., Jafari, H., Gasimov, Y.S.: Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 24(Suppl. 1), 49 (2020)

    Article  Google Scholar 

  37. Nikan, O., Avazzadeh, Z., Machado, J.T.: Numerical investigation of fractional nonlinear sine-Gordon and Klein–Gordon models arising in relativistic quantum mechanics. Eng. Anal. Bound. Elem. 120, 223 (2020)

    Article  MathSciNet  Google Scholar 

  38. Nikan, O., Machado, J., Avazzadeh, Z., Jafari, H.: Numerical evaluation of fractional Tricomi-type model arising from physical problems of gas dynamics. J. Adv. Res. 25, 205 (2020)

    Article  Google Scholar 

  39. Nikan, O., Machado, J.T., Golbabai, A.: Numerical solution of time-fractional fourth-order reaction–diffusion model arising in composite environments. Appl. Math. Model. 89, 819 (2021)

    Article  MathSciNet  Google Scholar 

  40. Rashidinia, J., Rasoulizadeh, M.N.: Numerical methods based on radial basis function-generated finite difference (RBF-FD) for solution of GKdVB equation. Wave Motion 90, 152 (2019)

    Article  MathSciNet  Google Scholar 

  41. Rasoulizadeh, M.N., Rashidinia, J.: Numerical solution for the Kawahara equation using local RBF-FD meshless method. J. King Saud Univ. Sci. 32, 2277 (2020)

    Article  Google Scholar 

  42. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  43. Olver, P.J.: In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 85, pp. 143–160. Cambridge University Press (1979)

  44. Shechter, G.: Matlab package kd-tree (2004)

Download references

Acknowledgements

The authors wish to thank the editors and anonymous reviewers for their precious time and valuable suggestions and comments which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rasoulizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasoulizadeh, M.N., Nikan, O. & Avazzadeh, Z. The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math Sci 15, 365–376 (2021). https://doi.org/10.1007/s40096-021-00375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00375-8

Keywords

Navigation