Skip to main content
Log in

Calculation of Uncertainties in Operating Strapdown Inertial Navigation Systems on Mobile Objects

  • NEW TECHNOLOGIES IN MECHANICAL ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The calculation of errors of the main elements of algorithms in the operation of a strapdown inertial navigation system on moving objects is undertaken. Four coordinate systems have been treated, in which the necessary equations for the projections of vectors on the axis of coordinate systems have been obtained for their further use in the construction of system algorithms. The transition matrices for different coordinate systems are compiled, and the dependences of these systems on each other are obtained. When determining the speed of a moving object, the equations of the orientation errors of the object have been compiled. Errors in the operational algorithms of a strapdown inertial navigation system have been simulated, which consist of errors in determining the speeds, coordinates, and orientation of an object. A structural diagram of the navigation system is compiled demonstrating the formation of errors. It is shown that the errors considered depend on the accuracy of the sensitive elements—gyroscopes and accelerometers. A relationship between the specified accuracy of the navigation system and the requirements for the accuracy of sensitive elements is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bogdanov, M.B., Prokhortsov, A.V., Savel’ev, V.V., Sukhinin, B.V., and Gas’kova, N.D., A method of reducing errors in the strapdown inertial navigation system, Izv. Akad. Raket. Artill. Nauk, 2009, no. 2 (6), p. 31.

  2. Golovanov, P.N., Popov, A.N., and Sergushov, I.V., Investigation of the influence of sensor errors on the accuracy of a small-sized strapdown inertial navigation system for aircraft control systems, in Problemy upravleniya, obrabotki i peredachi informatsii sbornik trudov IV Mezhdunarodnoi nauchnoi konferentsii (Proceedings of the 4th International Conference on Problems of Information Control, Processing and Transfer), 2015, p. 111.

  3. Godorov, Yu.A. and Lutmanov, S.V., Analysis of methodological errors caused by the conical movement of strapdown inertial navigation systems, Probl. Mekh. Upravl.: Nelinein. Din. Sist., 2015, no. 47, p. 4.

  4. Tereshkov, V.M., Direct method for estimating inaccuracy of inertial-satellite navigation system sensors, Tr. FGUP NPTsAP, Sist. Prib. Upravl., 2010, no. 2, p. 8.

  5. Ananenko, V.M., Estimation of astro correction errors of a strapdown inertial spacecraft orientation system, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2005, vol. 48, no. 10, p. 28.

    Google Scholar 

  6. Andreev, S.V., Il’inykh, V.V., Il’inykh, O.A., Chertkov, M.S., and Klyuchnikov, A.V., Estimation of inertial sensors error impact on platformless inertial navigation system accuracy, Vestn. Kontserna VKO Almaz-Antei, 2018, no. 2 (25), p. 29.

  7. Cherenkov, S.A. and Lisin, A.A., The method for determining navigation parameters and strapdown inertial navigation system for its implementation, RF Patent No. 2634071, 2017.

  8. Salychev, O.S., The method of determining the navigation parameters strapdown inertial navigation system, RF Patent No. 2348903, 2009.

  9. Diane, S.A.K., Miodushevskii, P.V., Miodushevskii, A.P., and Rozhnov, A.V., The method of measuring the motion parameters of an object and a system for its implementation, RF Patent No. 2658124 (2018).

  10. Ivshina, Yu.V. and Nikolaev, S.G., Calibration of spardown inertial navigation system according to the system error model, Mat. Model. Estestv. Nauk., 2013, vol. 1, p. 74.

    Google Scholar 

  11. Silant'ev, D.S., Error model of a strapdown inertial navigation system of an aircraft, Navig. Gidrogr., 2016, no. 45, p. 17.

  12. Tkachenko, A.N., Larionov, D.Yu., Podgornaya, L.N., and Shalymov, R.V., A model for studying the algorithms of inertial measuring systems, Registration Certificate of Computer Program RU 2018619156, 2018.

  13. Chelnokov, Yu.N., Perelyaev, S.E., and Chelnokova, L.A., An investigation of algorithms for estimating the inertial orientation of a moving object, Izv. Sarat. Univ., Nov. Ser., Ser.: Mat. Mekh. Inform., 2016, vol. 16, no. 1, p. 80.

    Google Scholar 

  14. Ardashov, A.A., Arsen’ev, V.N., Silant’ev, D.S., and Silant’ev, S.B., Estimation of accuracy of definition of parameters of movement of the aircraft with a strapdown inertial navigation system in the inertial basis, Mekhatron., Avtomatiz., Upravl., 2018, vol. 19, no. 3, p. 209.

    Google Scholar 

  15. Zaripov, A.N., Evaluation of the accuracy of algorithms of the strapdown inertial orientation system in the conditions of conical motion, in Instrumenty sovremennoi nauchnoi deyatel’nosti, Sbornik statei Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Proceedings of the International Conference on Tools of Modern Scientific Activity), Sukiasyan, A.A., Ed., 2016, p. 43.

  16. Bogomolov, V.V., Expressions for evaluating SINS accuracy in offline mode, in Navigatsiya i upravlenie dvizheniem materialy XVIII konferentsii molodykh uchenykh s mezhdunarodnym uchastiem (Proceedings of the 18th Conference of Young Scientists with International Participation on Navigation and Motion Control), 2016, p. 305.

  17. Loginov, M.Yu., Construction and study of differential equations of errors of a strapdown inertial navigation system operating in a normal coordinate system, Extended Abstract of Cand. Sci. (Tech. Sci.) Dissertation, Saratov: Gagarin State Tech. Univ., 2015.

  18. Mityushov, E.A., Misyura, N.E., and Berestova, S.A., Optimal stabilization of spacecraft in an inertial coordinate system based on a strapdown inertial navigation system, Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki, 2018, vol. 28, no. 2, pp. 252–259.

    MATH  Google Scholar 

  19. Legostaev, V.L., Methods, algorithms, and the structure of the software and hardware complex strapdown inertial navigation system, Cand. Sci. (Tech. Sci.) Dissertation, Moscow: Mosc. State Inst. Electron. Mat., 2011.

  20. Matveev, V.V., Inertsial’nye navigatsionnye sistemy: ucheb. Posobie (Inertial Navigation Systems, The School-Book), Tula: TulGU, 2012.

  21. Matveev, V.V. and Raspopov, V.Ya., Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh sistem: ucheb. posobie (Principles of Building Strapdown Inertial Navigation Systems), St. Petersburg: Elektropribor, 2009.

  22. Khachatuyan, A.A., Ponomareva, S.V., and Silina, E.S., Improving the quality of industrial production by compensation of the influence of temperature on the output parameters of the accelerometer in the free platform inertial navigation system, Inform.-Ekon. Aspekty Standartiz. Tekh. Regulir., 2018, no. 6 (46), p. 14.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ponomareva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, S.V., Kutuzova, V.S. & Pavlovich, A.A. Calculation of Uncertainties in Operating Strapdown Inertial Navigation Systems on Mobile Objects. J. Mach. Manuf. Reliab. 49, 723–730 (2020). https://doi.org/10.3103/S1052618820080099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820080099

Keywords:

Navigation