Skip to main content
Log in

Some Results of Studying the S-Wave Attenuation Field in the Caucasus using the Short-Period Coda Method

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

This paper studies the characteristics of seismic coda waves attenuation in Caucasus. Short-period coda waves are analyzed from about 500 earthquakes that occurred in Caucasus between 1989 and 2020. The triaxial digital records of seismic events with M ≥ 4.0 recorded at epicentral distances of 120–600 km are used. S-wave attenuation was estimated from short-period coda waves envelopes at a frequency of ~1 Hz. The structural features of the S-wave attenuation field in the upper mantle of the Caucasus are similar to those for other seismoactive zones. The attenuation field is represented by blocks, which have weak attenuation and are subisometric in plan view, and by strong attenuation zones. In the case of blocks, attenuation decreases in the direction from the boundaries to the central of these blocks (Q factor is up to 300–1000). Sources of the strongest earthquakes in the region with M > 6.5 are confined to the block boundaries. The detailed structure of the attenuation field in the aftershock zones of the 1970 Dagestan, 1988 Spitak and 1991 Racha earthquakes is considered. The results agree with existing ideas on the focal mechanisms of these earthquakes. The structure of the attenuation field corresponds to velocity anomalies, magnetotelluric and microseismic sounding results, and thermal field anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aptikaeva, O.I., The aftershock model of the seismic cycle, exemplified by the 1984 Dzhirgatal earthquake, in Chastotno-vremennye issledovaniya seismicheskikh kolebanii (Frequency-and-Time Studies of Seismic Vibrations), Zapol’skii, K.K., Ed., Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2007, vol. 2, pp. 95–107.

  2. Aptikaeva, O.I., Variations in the block structure and seismicity of the Garm area in the background of nonuniform rotation of the Earth, Vopr. Inzh. Seismol., 2012a, no. 4, pp. 55–65.

  3. Aptikaeva, O.I., The attenuation field in the source zones of strong earthquakes in Garm, Izv., Phys. Solid Earth, 2012b, vol. 48, no. 5, pp. 385–394.

    Article  Google Scholar 

  4. Aptikaeva, O.I., The attenuation field in the focal zone of the 2003 Altai earthquake, using the coda envelopes of the aftershocks, Seism. Instrum., 2015, vol. 51, no. 4, pp. 367–374.

    Article  Google Scholar 

  5. Aptikaeva, O.I., Seismic activity and structures of the crust and upper mantle in the areas of source zones of the largest earthquakes in the Altai-Sayan Region, Seism. Instrum., 2018, vol. 54, no. 2, pp. 184–198. https://doi.org/10.3103/S0747923918020020

    Article  Google Scholar 

  6. Aptikaeva, O.I., Detailed structure of attenuation field in the Western Tien Shan based on short-period coda waves, Seism. Instrum., 2019a, vol. 55, no. 2, pp. 185-195. https://doi.org/10.3103/S0747923919020038

    Article  Google Scholar 

  7. Aptikaeva, O.I., Detailed structure of S-wave attenuation field and morphology of the aftershock coda envelopes in the source zones of strong earthquakes of the Caucasus and East Anatolia, in Opasnye prirodnye i tekhnogennye protsessy v gornykh regionakh: modeli, sistemy, tekhnologii (Dangerous Natural and Technogenic Processes in Mountainous Regions: Models, Systems, and Technologies), Nikolaev, A.V. and Zaalishvili, V.B., Eds., Vladikavkaz: Geofiz. Inst. Vladkakaz. Nauchn. Tsentra Ross. Akad. Nauk, 2019b, pp. 203–210.

  8. Aptikaeva, O.I., Peculiarities of the Van earthquakes of 1976 and 2011, swarm seismicity and S-wave attenuation field, Geol. Geofiz. Yuga Ross., 2019c, vol. 9, no. 3, pp. 105–118.

    Google Scholar 

  9. Aptikaeva, O.I., S-wave attenuation field and seismotectonics of Eastern Anatolia, Seism. Instrum., 2020, vol. 56, no. 1, pp. 106–120. https://doi.org/10.3103/S074792392001003X

    Article  Google Scholar 

  10. Aptikaeva, O.I. and Aptikaev, S.F., The S-wave attenuation field in the near area of NPP sites based on seismic monitoring data: Case study of the Akkuyu NPP, Turkey, Geofiz. Issled., 2019, vol. 20, no. 2, pp. 56–72. https://doi.org/10.21455/gr2019.2-5

    Article  Google Scholar 

  11. Aptikaeva, O.I. and Kopnichev, Yu.F., Fine structure of the lithosphere and asthenosphere in the Garm area and its relationship to seismicity, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 3, pp. 326–330.

    Google Scholar 

  12. Aptikaeva, O.I. and Kopnichev, Yu.F., Detailed mapping of the lithosphere and asthenosphere of the Garm area from shear wave attenuation, Vulkanol. Seismol., 1992, nos. 5–6, pp. 101–118.

  13. Aptikaeva, O.I., Kopnichev, Yu.F., and Shevchenko, V.I., The structure of the Earth’s crust and upper mantle with respect to tectogenesis of the region of the Garm test area (Tadzhikistan), Fiz. Zemli, 1994, nos. 7–8, pp. 53–64.

  14. Aptikaeva, O.I., Aref’ev, S.S., Kvetinskii, S.I., Kopnichev, Yu.F., and Mishatkin, V.I., Inhomogeneities of the lithosphere in the source zone of the 1991 Racha earthquake, Dokl. Ross. Akad. Nauk, 1995. vol. 344, no. 4, pp. 533–538.

    Google Scholar 

  15. Arefiev, S.S., Stasyuk, E.I., and Rivera, L., Source model of the Dagestan, 1970 earthquake, Izv., Phys. Solid Earth, 2004, vol. 40, no. 2, pp. 102–113.

    Google Scholar 

  16. Arefiev, S.S., Rogozhin, E.A., Aptekman, Zh.Ya., Bykova, V.V., and Dorbath, C., Deep structure and tomographic imaging of strong earthquake source zones, Izv., Phys. Solid Earth, 2006, vol. 42, no. 10, pp. 850–864.

    Article  Google Scholar 

  17. Aref’ev, S.S., Epitsentral’nye seismologicheskie issledovaniya (Epicentral Seimsological Studies), Moscow: Akademkniga, 2003.

  18. Aref’ev, S.S., Bykova, V.V., and Vakarchuk, R.N., The model of the source of the September 7, 2009 earthquake in Central Caucasus, Geofiz. Issled., 2011, vol. 12, no. 1, pp. 33–46.

    Google Scholar 

  19. Asmanov, O.A., Amirov, S.R., Daniyalov, M.G., Levkovich, R.A., Mirzaliev, M.M., Osokina, A.Sh., Gabsatarova, I.P., and Mikhailova, R.S., The Kizilyurt earthquake of January 31, 1999 with M S = 5.5, I 0 = 7 (Dagestan), in Zemletryaseniya Severnoi Evrazii v 1999 godu (Earthquakes of Northern Eurasia in 1999), Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk, 2005, pp. 254–263.

  20. Balavadze, B.K., Tvaltvadze, G.K., Shengelaya, G.Sh., Sikharulidze, D.I., and Kartvelishvili, K.M., Geophysical investigations of the Earth’s crust and upper mantle in the region of Caucasus, Geotektonika, 1966, no. 3, pp. 30–40.

  21. Berdichevskii, M.N., Borisova, V.P., Golubtsova, N.S., Ingerov, A.I., Konovalov, Yu.F., Kulikov, A.V., Solodilov, L.N., Chernyavskii, G.A., and Shpak, I.P., Interpretation of magnetotelluric soundings in the Lesser Caucasus, Izv., Phys. Solid Earth, 1996, vol. 32, no. 4, pp. 365–370.

    Google Scholar 

  22. Catalog of earthquakes of the Caucasus region with M ≥ 4.0 (K ≥ 11.0) from ancient times through 2000 (compiled by A.A. Godzikovskaya, last revision February 21, 2001). http://zeus.wdcb.ru/wdcb/sep/caucasus/. Accessed October 1, 2019.

  23. Dagestanskoe zemletryasenie 14 maya 1970 g. Seismologiya. Geologiya. Geofizika (The Dagestan Earthquake of May 14, 1970: Seismology, Geology, and Geophysics), Moscow: Nauka, 1980.

  24. Dilek, Y. and Sandvol, E., Seismic structure, crustal architecture and tectonic evolution of the Anatolian–African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region, in Ancient Orogens and Modern Analogues, vol. 327 of Geol. Soc. London, Spec. Publ., Murphy, J.B., Keppie, J.D., and Hynes, A.J., Eds., 2009, pp. 127–160. https://doi.org/10.1144/SP327.8

  25. Dorbath, C., Woerd, J.V., Arefiev, S.S., Rogozhin, E.A., and Aptekman, J.Y., Geological and seismological field observations in the epicentral region of the 27 September 2003 M W 7.2 Gorny Altay Earthquake (Russia), Bull. Seismol. Soc. Am., 2008, vol. 98, no. 6, pp. 2849–2865. https://doi.org/10.1785/0120080166

    Article  Google Scholar 

  26. Gabsatarova, I.P., Instrumental parameters of the source of the Kurchaloi earthquake, October 11, 2008, K P = 14.5, M W = 5.8, I 0 = 7–8 (Chechen Republic), in Zemletryaseniya Severnoi Evrazii, 2008 god (Earthquakes of Northern Eurasia in 2008), Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk, 2014, pp. 433–448.

  27. Godzikovskaya, A.A., Mantle earthquakes of the Caucasus in the Terek–Sunzha Foredeep, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1988, no. 7, pp. 102–106.

  28. Gor’kavyi, N.N., Levitskii, L.S., Taidakov, T.A., Trapeznikov, Yu.A., and Fridman, A.M., Correlation between regional seismicity and the Earth’s rotation irregularity as a function of the earthquake sources depth, Izv., Phys. Solid Earth, 1999, vol. 35, no. 10, pp. 840–853.

    Google Scholar 

  29. Haessler, H., Deschamps, A., Dufumier, H., Fuenzalida, H., and Cisternas, A., The rupture process of the Armenian earthquake from broad-band teleseismic body wave records, Geophys. J. Int., 1992, vol. 109, no. 1, pp. 151–161. https://doi.org/10.1111/j.1365-246X.1992.tb00085.x

    Article  Google Scholar 

  30. Kirsanov, V.I. and Pavlenko, O.V., Quality estimates of the crust and upper mantle of the Northeast Caucasus based on to Makhachkala seismic station records, Seism. Instrum., 2020, vol. 56, no. 1, pp. 61–71. https://doi.org/10.3103/S0747923920010077

    Article  Google Scholar 

  31. Kopnichev, Yu.F. and Sokolova, I.N., High S-wave attenuation anomalies and ringlike seismogenic structures in the lithosphere beneath Altai: Possible precursors of large earthquakes, Izv., Atmos. Ocean. Phys., 2016a, vol. 52, no. 8, pp. 806–815.

    Article  Google Scholar 

  32. Kopnichev, Yu.F. and Sokolova, I.N., The characteristics of the shear-wave attenuation field in the Altai lithosphere and their relationship to seismicity, J. Volcanol. Seismol., 2016b, vol. 10, no. 5, pp. 332–338. https://doi.org/10.1134/S0742046316050043

    Article  Google Scholar 

  33. Kopnichev, Yu.F. and Sokolova, I.N., Space–time variations in the attenuation field of short period shear waves in the Hindu Kush area, J. Volcanol. Seismol., 2018a, vol. 12, no. 6, pp. 424–433. https://doi.org/10.1134/S0742046318060040

    Article  Google Scholar 

  34. Kopnichev, Yu.F. and Sokolova, I.N., Temporal variations of the S-wave attenuation field in the area of the Lop Nor Nuclear Test Site, Seism. Instrum., 2018b, vol. 54, no. 6, pp. 691–694. https://doi.org/10.3103/S0747923918060063

    Article  Google Scholar 

  35. Kopnichev, Yu.F. and Sokolova, I.N., Heterogeneities of the field of S-wave attenuation in the lithosphere of the Caucasus and their relationship with seismicity, Izv., Atmos. Oceanic Phys., 2019a, vol. 55, no. 10, pp. 1526–1535. https://doi.org/10.1134/S0001433819100050

    Article  Google Scholar 

  36. Kopnichev, Yu.F. and Sokolova, I.N., Characteristics of the short-period S-wave attenuation field in the source zone of the strongest Tohoku earthquake of March 11, 2011 (M w = 9.0), Izv., Atmos. Oceanic Phys., 2019b, vol. 55, no. 8, pp. 804–815. https://doi.org/10.1134/S0001433819080061

    Article  Google Scholar 

  37. Kopnichev, Yu.F. and Sokolova, I.N., Mapping S-wave attenuation field of the North Tien Shan region using seismogram coda for local earthquakes and quarry blasts, Izv., Atmos. Oceanic Phys., 2019c, vol. 55, no. 11, pp. 1803–1813. https://doi.org/10.1134/S0001433819110215

    Article  Google Scholar 

  38. Koulakov, I., Zabelina, I., Amanatashvili, I., and Meskhia, V., Nature of orogenesis and volcanism in the Caucasus region based on results of regional tomography, Solid Earth, 2012, no. 3, pp. 327–337. https://doi.org/10.5194/se-3-327-2012

  39. Kuznetsova, K.I., Aptekman, Zh.Ya., Shebalin, N.V., and Shteinberg, V.V., Aftershocks of post-effect and aftershocks related to the development of the source zone of the Dagestan earthquake, in Issledovaniya po fizike zemletryasenii (Investigations in Earthquake Physics), Moscow: Nauka, 1976, pp. 94–114.

  40. Nikonov, A.A., The strongest earthquakes of the Eastern Caucasus from the perspective of geodynamics, in Geodinamika Kavkaza (Geodynamics of the Caucasus), Belov, A.A. and Satian, M.A., Eds., Moscow: Nauka, 1989, pp. 148–156.

  41. Ovsyuchenko, A.N., Gorbatikov, A.V., Stepanova, M.Yu., Larin, N.V., and Rogozhin, E.A., Seismotectonics and deep structure of the Vladikavkaz active fault zone, Geofiz. Issled., 2011, vol. 12, no. 1, pp. 47–59.

    Google Scholar 

  42. Pavlenko, O.V., The characteristics of radiation and propagation of seismic waves in he Northern Caucasus, estimated from the records of the Sochi and Anapa seismic stations, Vopr. Inzh. Seismol., 2016a, vol. 43, no. 1, pp. 49–61.

    Google Scholar 

  43. Pavlenko, O.V., The Q-factor estimates for the crust and upper mantle in the vicinity of Sochi and Anapa (North Caucasus), Izv., Phys. Solid Earth, 2016b, vol. 52, no. 3, pp. 353–363. https://doi.org/10.1134/S1069351316030101

    Article  Google Scholar 

  44. Pavlenko, V.A. and Pavlenko, O.V., The seismic wave attenuation in the crust and upper mantle in the vicinity of the Kislovodsk seismic station, Izv., Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 492–502. https://doi.org/10.1134/S1069351316030113

    Article  Google Scholar 

  45. Papalashvili, V.G., Darakhvelidze, L.K., Labadze, L.V., Chikovani, V.V., Srgsyan, G.V., and Izrailevskii, A., The regional catalog of Caucasus, in Zemletryaseniya v SSSR v 1976 godu (Earthquakes in USSR in 1976), Moscow: Nauka, 1980, pp. 127–137.

  46. Rautian, T.G., Khalturin, V.I., and Shengeliya, I.S., Seismic coda envelopes and magnitudes estimation for earthquakes of the Northern Caucasus, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1979, no. 6, pp. 22–29.

  47. Rogozhin, E.A., Reconstruction of the long-term seismic regime using the paleoseismic data, in Ekstremal’nye prirodnye yavleniya i katastrofy (Extreme Natural Phenomena and Catastrophes), vol. 1: Otsenka i puti snizheniya negativnykh posledstvii ekstremal’nykh prirodnykh yavlenii (Assessment and Ways to Mitigate the Negative Effects of Extreme Natural Phenomena), Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2010, pp. 44–64.

  48. Rogozhin, E.A., Rybakov, L.N., Bogachkin, B.M., and Borisov, B.A., Surface ruptures reflecting the slip character in the source of the Spitak earthquake, Vopr. Inzh. Seismol., 1991, vol. 32, pp. 45–59.

    Google Scholar 

  49. Sass, P., Ritter, O., Ratschbacher, L., Tympel, J., Matiukov, V.E., Rybin, A.K., and Batalev, V.Yu., Resistivity structure underneath the Pamir and Southern Tian Shan, Geophys. J. Int., 2014, vol. 198, no. 1, pp. 564–579. https://doi.org/10.1093/gji/ggu146

    Article  Google Scholar 

  50. Shebalin, N.V., Ochagi sil’nykh zemletryasenii na territorii SSSR (Sources of Strong Earthquakes in the Territory of USSR), Moscow: Nauka, 1974.

  51. Shebalin, N.V. and Buzrukova, D.I., Attenuation of seismic shaking and Q-factor of the medium, Vopr. Inzh. Seismol., 1989, vol. 30, pp. 63–72.

    Google Scholar 

  52. Shengelia, I., Javakhishvili, Z., and Jorjiashvili, N., Coda wave attenuation for three regions of Georgia (Sakartvelo) using local earthquakes, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 5, pp. 2220–2230. https://doi.org/10.1785/0120100326

    Article  Google Scholar 

  53. Shengelia, I., Jorjiashvili, N., Godoladze, T., Javakhishvili, Z., and Tumanova, N., Intrinsic and scattering attenuations in the crust of the Racha, Georgia, J. Earthquake Tsunami, 2020, vol. 14, no. 2, art. no. 2050006. https://doi.org/10.1142/S1793431120500062

    Article  Google Scholar 

  54. Sholpo, V.N., Rogozhin, E.A., and Goncharov, M.A., Skladchatost’ Bol’shogo Kavkaza (Folding of the Greater Caucasus), Moscow: Nauka, 1993.

  55. Sidorenkov, N.S., The Interaction between Earth’s Rotation and Geophysical Processes, Weinheim: Wiley, 2009, Table D.1.

  56. Sidorin, A.Ya., A look at the 1988 Spitak earthquake in the light of lessons learned from the 1948 Ashgabat catastrophe, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 11, pp. 1774–1786. https://doi.org/10.1134/S0001433819110148

    Article  Google Scholar 

  57. Spetsializirovannyi katalog zemletryasenii dlya zadach obshchego seismicheskogo raionirovaniya territorii Rossiiskoi Federatsii (Specialized Earthquake Catalogue for the Purposes of General Seismic Zonation of the Russian Federation Territory), Ulomov, V.I. and Medvedeva, N.S., Eds., Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2013. http://seismos-u.ifz.ru/documents/Eartquake-Catalog-%D0%A1%D0% 9A%D0%97.pdf

    Google Scholar 

  58. Tskhakaya, A.D., On depths of earthquakes in the Caucasus region, Izv. Akad. Nauk SSSR. Ser. Geofiz., 1962, no. 5, pp. 577–584.

  59. Vakarchuk, R.N., Tatevossian, R.E., Aptekman, Zh.Ya., and Bykova, V.V., The 1991 Racha earthquake, Caucasus: Multiple source model with comprehensive type of motion, Izv., Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 653–659. https://doi.org/10.1134/S1069351313050121

    Article  Google Scholar 

  60. Vinnik, L.P., Godzikovskaya, A.A., Pataraya, E.I., Sikharulidze, D.I., and Bagramyan, A.Kh., Velocity anomalies of the upper mantle beneath Caucasus, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1978, no. 7, pp. 22–31.

  61. Zemletryaseniya Rossii v 2001–2017 godu. Ezhegodniki za 2001–2017 gg. (Earthquakes in Russia in 2001 to 2017. Yearbooks), Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk.

Download references

Funding

The study was carried out under the state task of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Aptikaeva.

Ethics declarations

The author declares no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptikaeva, O.I. Some Results of Studying the S-Wave Attenuation Field in the Caucasus using the Short-Period Coda Method. Seism. Instr. 57, 97–114 (2021). https://doi.org/10.3103/S0747923921010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921010047

Keywords:

Navigation