Skip to main content
Log in

Dissolution of Natural Octahedral Diamonds in an Fe–S Melt at High Pressure

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—An experimental study was carried out on the dissolution of natural octahedral diamonds from the Internatsionalnaya and Yubileinaya kimberlite pipes (Yakutia) in an Fe–S melt at 4 GPa and 1450–1500°C with different sulfur contents (10–25 wt %). It was found that with an increase in sulfur content in the iron melt, the degree of diamond dissolution sharply decreases. The stationary (final) shape of diamond crystal dissolution under the achieved conditions corresponds to an octahedroid with trigonal etching layers, which is confirmed by photogoniometry. Diamonds with similar morphology are common in kimberlite pipes, especially in mantle xenoliths from kimberlites. It was concluded that diamonds with this shape did not undergo natural dissolution in a kimberlite magma, but, similar to flat-faced octahedra, were probably isolated from it in xenoliths. Therefore, the higher the content of octahedroid-shaped diamonds with trigonal layers in a deposit, the smaller the direct influence of an aggressive kimberlite magma on the diamond content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Afanas’ev, V.P., Efimova, E.S., Zinchuk, N.N., and Koptil’, V.I., Atlas morfologii almazov Rossii (Morphologicl Atlas of Russian Diamonds), Novosibirsk: SO RAN, NITs OIG-GM, 2000.

  2. Arima, M. and Kozai, Y., Diamond dissolution rates in kimberlitic melts at 1300–1500°C in the graphite stability field, Eur. J. Mineral, 2008, vol. 20, p. 357. https://doi.org/10.1127/0935-1221/2008/0020-1820

    Article  Google Scholar 

  3. Bartoshinsky, Z.V., On diamonds from eclogites of the Mir kimberlite pipe, Geol. Geofiz., 1960, no. 6, pp. 129–131.

  4. Bartoshinsky, Z.V. and Kvasnitsa, V.N., Kristallomorfologiya almaza iz kimberlitov (Crystal Morphology of Diamond from Kimberlites), Kiev: Nauk. Dumka, 1991.

  5. Bulanova, G.P., Barashkov, Yu.P., Tal’nikova, S.B., and Smelova, G.B., Prirodnyi almaz – geneticheskie aspekty (Natural Diamond: Genetic Aspects), Novosibirsk: Nauka, 1993.

  6. Bulanova, G.P., Spetsius, Z.V., and Leskova, N.V., Sul’fidy v almazakh i ksenolitakh iz kimberlitovykh trubok Yakutii (Sulfides and Diamonds in Xenoliths from Yakutian Kimberlite Pipes), Novosibirsk: Nauka, 1990.

  7. Bulanova, G.P., Griffin, W.L., and Ryan, C.G., Nucleation environment of diamonds from yakutian kimberlites, Mineral. Mag., 1998, vol. 62, p. 409.

    Article  Google Scholar 

  8. Bulanova, G.P., Walter, M.J., Smith, C.B., Kohn, S.C., Armstrong, L.S., Blundy, J., and Gobbo, L., Mineral inclusions in sublithospheric diamonds from collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism, Contrib. Mineral. Petrol., 2010, vol. 160, no. (4), pp. 489–510. https://doi.org/10.1007/s00410-010-0490-6

  9. Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., and Tomilenko, A.A., On the formation of element carbon during decomposition of CaCO3 at high P–T parameters under reducing conditions, Dokl. Earth Sci., 2011, vol. 441, no. 2, pp. 1738–1741. https://doi.org/10.1134/S1028334X11120233

    Article  Google Scholar 

  10. Chepurov, A.A., Kosolobov, S.S., Shcheglov, D.V., Sonin, V.M., Chepurov, A.I., and Latyshev, A.V., Nanosculptures on round surfaces of natural diamonds, Geol. Ore Deposits, 2017, vol. 59, no. 3, pp. 256–264. https://doi.org/10.1134/S1075701517030023

    Article  Google Scholar 

  11. Dasgupta, R., Ingassing, storage, and outgassing of terrestrial carbon through geologic time, Rev. Mineral. Geochem, 2013, vol. 75, pp. 183–229.

    Article  Google Scholar 

  12. Dasgupta, R. and Hirschmann, M.M., The deep carbon cycle and melting in Earth’s interior, Earth Planet. Sci. Lett. 2010., vol. 298. P. 1‒13. https://doi.org/10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  13. Efimova, E.S., Sobolev, N.V., and Pospelova, L.N., Sulfide inclusions in diamonds and specifics of their paragenesis, Zap. Ross. Mineral. O-va, 1983, vol. 112, no. 3, pp. 300–310.

    Google Scholar 

  14. Fedortchouk, Y., Canil, D., and Semenets, E., Mechanism of diamond oxidation and their bearing on the fluid composition in kimberlitic magmas, Am. Mineral., 2007, vol. 92, p. 1200.

    Article  Google Scholar 

  15. Frost, D.J. and McCammon, C.A., The redox state of the earth’s mantle, Annu. Rev. Earth Planet. Sci., 2008, vol. 36, pp. 389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

    Article  Google Scholar 

  16. Garanin, V.K. and Kudryavtseva, G.P., Morphology, physical properties and paragenesis of inclusion–bearing diamonds from Yakutian kimberlites, Lithos, 1990, vol. 25, pp. 211–217.

    Article  Google Scholar 

  17. Gnevushev, M.A. and Bartoshinsky, Z.V., On the morphology of Yakutian diamonds, Materialy po geologii poleznykh iskopaemykh Yakutii (Proc. Geol. Mineral Resources of Yakutia), (Yakutsk. Fil. Akad. Nauk SSSR, Yakutsk, 1959), no. 4, pp. 74–92.

  18. Gorshkov, A.I., Yan Nan Bao, Bershov, L.V., Ryabchikov, I.D., Sivtsov, A.V., and Lapina, M.I., Inclusions of native metals and other minerals in diamond from Kimberlite Pipe 50, Liaoning, China, Geochem. Int., 1997, vol. 35, no. 8, pp. 695–703.

    Google Scholar 

  19. Harris, J.W., Hawthorne, J.B., Osterveld, M.M., and Wehmeyer, E., A classification scheme for diamond and a comparative study of South African diamond characteristics in Physics and Chemistry of the Earth, Ahrens, L.H., Dawson, J.B., Duncan, A.R., and Erlank, A.J, Eds., 1975, vol. 9, pp. 765‒783.

  20. Harris, J.W., Diamond geology, The Properties of Natural and Synthetic Diamond, Field, J.E, Ed., London: Acad. Press, 1992, pp. 345‒393.

  21. Hayman, P., Kopylova, M., and Kaminsky, F., Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil), Contrib. Mineral. Petrol., 2005, vol. 149, no. 4, pp. 430–445. https://doi.org/10.1007/s00410-005-0657-8

    Article  Google Scholar 

  22. Kagi, H., Zedgenizov, D.A., Ohfuji, H., and Ishibashi, H., Micro- and nano-inclusions in a superdeep diamond from Sao Luiz, Brazil, Geochem. Int., 2016, vol. 54, no. 10, pp. 834‒838. https://doi.org/10.1134/S0016702916100062

    Article  Google Scholar 

  23. Kaminsky, F., Mineralogy of the lower mantle: a review of ‘super–deep’ mineral inclusions in diamond, Earth–Sci. Rev., 2012, vol. 110, nos. 1–4, pp. 127–147. https://doi.org/10.1016/j.earscirev.2011.10.005

    Article  Google Scholar 

  24. Kaminsky, F.V. and Wirth, R., Iron carbide inclusions in lower-mantle diamond from Juina, Brazil, Can. Mineral., 2011, vol. 49, p. 555‒572. https://doi.org/10.3749/canmin.49.2.555

    Article  Google Scholar 

  25. Keppler, H., Wiendenbeck, M., and Shcheka, S.S., Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle, Nature, 2003, vol. 424, p. 414‒416.

    Article  Google Scholar 

  26. Khokhryakov, A.F. and Pal’yanov, Yu.N., The evolution of diamond morphology in the process of dissolution: experimental data, Am. Mineral., 2007, vol. 92, p. 909‒917.

    Article  Google Scholar 

  27. Khokhryakov, A.F. and Pal’yanov, Yu.N., Influence of the fluid composition on diamond dissolution forms in carbonate melts, Am. Mineral., 2010, vol. 95, p. 1508‒1514.

    Article  Google Scholar 

  28. Kozai, Y. and Arima, M., Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420°C and 1 GPa with controlled oxygen partial pressure, Am. Mineral., 2005, vol. 90, p. 1759‒1766.

    Article  Google Scholar 

  29. Kukharenko, A.A., Almazy Urala (Diamond of the Urals), Moscow: Gosgeoltekhizdat, 1955.

  30. Kvasnitsa, V.N., Melkie almazy (Small Diamonds), Kiev: Nauk. dumka, 1985.

  31. Kvasnitsa, V.N., Zinchuk, N.N., and Koptil’, V.I., Tipomorfizm mikrokristallov almaza (Typomorphism of Diamond Microcrystals), Moscow: OOO “Nedra–Biznestsentr”, 1999.

  32. Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D., and Litasov, K.D., The CaCO3‒Fe interaction: kinetic approach for carbonate subduction to the deep earth’s mantle, Phys. Earth Planet. Inter., 2016, vol. 259, p. 1‒9. https://doi.org/10.1016/j.pepi.2016.08.008

    Article  Google Scholar 

  33. Meyer, H.O.A. and McCallum, M.E., Mineral inclusions in diamonds from the Sloan kimberlites, Colorado, J. Geol., 1986, vol. 94, p. 600.

    Article  Google Scholar 

  34. Meyer, H.O.A., Inclusions in diamond, Mantle Xenoliths, Nixon, P.H., Ed., Chichester: John Willy and Sons, 1987, p. 501‒533.

    Google Scholar 

  35. Nestola, F., Inclusions in super–deep diamonds: windows on the very deep earth, Rend. Fis. Acc. Lincei, 2017, vol. 28, p. 595‒604.

    Article  Google Scholar 

  36. Orlov, Yu.L., Mineralogiya almaza (Diamond Mineralogy), Moscow: Nauka, 1984.

  37. Rohrbach, A., Ballhaus, C., Gola–Schindler, U., Ulmer, P., Kamenetsky, V.S., and Kuzmin, D.V., Metal saturation in the upper mantle, Nature, 2007, vol. 449, pp. 456–458. https://doi.org/10.1038/nature06183

    Article  Google Scholar 

  38. Sharp, W.E., Pyrrhotite: a common inclusion in the South African diamonds, Nature, 1966, vol. 211, no. 5047, pp. 402‒403.

    Article  Google Scholar 

  39. Shcheka, S.S., Wiendenbeck, M., Frost, D.J., and Keppler, H., Carbon solubility in mantle minerals, Earth Planet. Sci. Lett., 2006, vol. 245, p. 730‒732.

    Article  Google Scholar 

  40. Shushkanova, A.V. and Litvin, Y.A., Diamond nucleation and growth in sulfide‒carbon melts: an experimental study at 6.0‒7.1 GPa, Eur. J. Mineral., 2008, vol. 20, pp. 349‒355. https://doi.org/10.1127/0935-1221/2008/0020-1819

    Article  Google Scholar 

  41. Smith, E.M., Shirey, S.B., Nestola, F., Bullock, E.S., Wang, J., Richardson, S.H., and Wang, W., Large gem diamonds from metallic liquid in Earth’s deep mantle, Science, 2016, vol. 35, pp. 1403–1405. https://doi.org/10.1126/science.aal1303

    Article  Google Scholar 

  42. Smith, E.M., Shirey, S.D., and Wang, W., The very deep origin of the world’s biggest diamond, Gems Gemol., 2017, vol. 53, no. 4, p. 388‒403. https://doi.org/10.5741/GEMS.53.4.388

    Article  Google Scholar 

  43. Sobolev, N.V., Efimova, E.S., and Pospelova, L.N., Native iron in Yakutian diamonds and its paragenesis, Geol. Geofiz., 1981, vol. 22, no. 12, pp. 25–29.

    Google Scholar 

  44. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., and Osorgin, N.Yu., Etching of diamond crystals in silicate melt in the presence of aqueous fluid under high P–T parameters, Geokhimiya, 1997, vol. 35, no. 4, pp. 451–455.

  45. Sonin, V.M., Zhimulev, E.I., Fedorov, I.I., Tomilenko, A.A., and Chepurov, A.I., Etching of diamond crystals in a dry silicate melt at high P–T parameters, Geochem. Int., 2001, vol. 39, no. 3, pp. 268–274.

  46. Sonin, V.M., Zhimulev, E.I., Afanas’ev, V.P., and Chepurov, A.I., Genetic aspects of the diamond morphology, Geol. Ore Deposits, 2002, vol. 44, no. 4, pp. 291–299.

    Google Scholar 

  47. Sonin, V.M., Zhimulev, E.I., Tomilenko, A.A. Chepurov, S.A., and Chepurov, A.I., Chromatographic study of diamond etching in kimberlitic melts in the context of diamond natural stability, Geol. Ore Deposits, 2004, vol. 46, no. 3, pp. 182–190.

    Google Scholar 

  48. Sonin, V.M., Zhimulev, E.I., Pomazanskii, B.S., Zemnukhov, A.L., Chepurov, A.A., Afanas’ev, V.P., and Chepurov, A.I., Morphological features of diamond crystals dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C, Geol. Ore Deposits, 2018a, vol. 60, no. 1, pp. 82–92. https://doi.org/10.1134/S1075701518010051

    Article  Google Scholar 

  49. Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Chepurov, A.I., and Pokhilenko, N.P., Influence of the sulfur concentration in a Fe–S melt on diamond preservation under P–T conditions of the Earth’s mantle, Dokl. Earth Sci. 2018b, vol. 481, no. 1, pp. 922–924. https://doi.org/10.1134/S1028334X1807019X

    Article  Google Scholar 

  50. Stachel, T., Harris, J.W., and Brey, G.P., Rare and unusual mineral inclusions in diamond from Mwadui, Tanzania, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 34–47.

    Article  Google Scholar 

  51. Stagno, V. and Frost, D.J., Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate–bearing melts coexist with graphite or diamond in peridotite assemblages, Earth Planet. Sci. Lett., 2010, vol. 300, pp. 72–84. https://doi.org/10.1016/j.epsl.2010.09.038

    Article  Google Scholar 

  52. Stagno, V., Dickson, O.O., McCammon, C.A., and Frost, D.J., The oxidation state of the mantle and the extraction of carbon from Earth’s interior, Nature, 2013, vol. 493, pp. 84–88. https://doi.org/10.1038/nature11679

    Article  Google Scholar 

  53. Sunagawa, I., Morphology of natural and synthetic diamond crystals, Materials Science of the Earth’s Interior, Tokyo: TERRAPUB, 1984.

    Google Scholar 

  54. Titkov S.V., Gorshkov A.I., Solodova Yu.P., Ryabchikov I.D., Magazina L.O., Sivtsov A.V., Gasanov M.D., Sedova E.A., and Samorosov, G.G., Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data, Dokl. Earth Sci., 2006, vol. 410, no. 2, pp. 1106–1108.

    Article  Google Scholar 

  55. Trautman, R.L., Griffin, B.J., Taylor, V.R., Spetsius, Z.V., Smith, K.B., and Lee, D.K., Comparison of microdiamonds from kimberlites and lamproites of Yakutia and Australia, Geol. Geofiz., 1997, vol. 38, pp. 341–355.

    Google Scholar 

  56. Walter, M.J., Kohn, S.C., Araujo, D., Bulanova, G.P., Smith, C.B., Gaillou, E., Wang, J., Steele, A., and Shirey, S.B., Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions, Science, 2011, vol. 334, pp. 54‒57. https://doi.org/10.1126/science.1209300

    Article  Google Scholar 

  57. Win, T.T., Davies, R.M., Griffin, W.L., Wathanakhul, P., and Frenc, D.H., Distribution and characteristics of diamonds from Myanmar, J. Asian Earth Sci., 2001, vol. 19, pp. 563‒577. https://doi.org/10.1016/S1367-9120(00)00055-9

    Article  Google Scholar 

  58. Zhang, Z., Lentsch, N., and Hirschmann, M.M., Carbon-saturated monosulfide melting in shallow mantle: solubility and effect on solidus, Contrib. Mineral. Petrol., 2015, vol. 170, pp. 47. https://doi.org/10.1007/s00410-015-1202-z

    Article  Google Scholar 

  59. Zhang, Z. Hasting, P., Von der Handt, A., and Hirschmann, M.M., Experimental determination of carbon solubility in Fe–Ni–S melts, Geochim. Cosmochim. Acta, 2018, vol. 225, pp. 66‒79. https://doi.org/10.1016/j.gca.2018.01.009

    Article  Google Scholar 

  60. Zhimulev, E.I., Sonin, V.M., Fedorov, I.I., Tomilenko, A.A., Pokhilenko, L.N., and Chepurov, A.I., Diamond stability with respect to oxidation in experiments with minerals from mantle xenoliths at high P–T Parameters, Geochem. Int., 2004, vol. 42, no. 6, pp. 520–525.

    Google Scholar 

  61. Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F., Sonin, V.M., Chepurov, A.A., and Pokhilenko, N.P., Diamond crystallization in the Fe–Co–S–C and Fe–Ni–S–C systems and the role of sulfide–metal melts in the genesis of diamond, Geochem. Int., 2012, vol. 50, no. 3, pp. 205–216. https://doi.org/10.1134/S0016702912030111

    Article  Google Scholar 

  62. Zhimulev, E.I., Sonin, V.M., Mironov, A.M., and Chepurov, A.I., Effect of sulfur concentration on diamond crystallization in the Fe–C–S System at 5.3–5.5 GPa and 1300–1370°C, Geochem. Int., 2016, vol. 54, no. 5, pp. 415–422. https://doi.org/10.1134/S0016702916050116]

    Article  Google Scholar 

  63. Zinchuk, N.N. and Koptil’, V.I., Tipomorfizm almazov Sibirskoi platform (Typomporphism of Diamonds of the Siberian Platform), Moscow: OOO “Nedra-Biznestsentr”, 2003.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for reading the manuscript and valuable comments.

Funding

The study was carried out under the state assignment for the IGM SB RAS with financial support from PJSC ALROSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sonin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonin, V.M., Zhimulev, E.I., Chepurov, A.A. et al. Dissolution of Natural Octahedral Diamonds in an Fe–S Melt at High Pressure. Geol. Ore Deposits 62, 497–507 (2020). https://doi.org/10.1134/S1075701520060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520060070

Keywords:

Navigation