Skip to main content
Log in

Multi-Stage Fluid System Responsible for Ore Deposition in the Ossa-Morena Zone (Portugal): Constraints in Cu-Ore Deposits Formation

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Mociços Cu-deposit is part of a cluster of ancient copper mines in the Sousel-Barrancos metallogenic belt in the Ossa-Morena Zone at the SW Iberia. The orebodies develop along NNW-SSE quartz-carbonate-sulfides veins with pyrite and chalcopyrite as the main sulfide phases, and ore emplacement has been attributed to copper remobilization from the metasedimentary host-rocks, though no detailed studies were conducted. A novel multi-stage fluid circulation model is hereby proposed, supported by petrography and fluid inclusion data evidencing the PTV-x evolution of the deposit. Stage (i) is an early metamorphic stage with a predominance of carbonic fluids, identified in highly deformed milky quartz (QzI), with estimated pressures between 338 and 486 MPa compatible to the regional metamorphic events (greenschist facies). Stage (ii) corresponds to a late-metamorphic manifestation of H2O–NaCl–CO2 fluids, with low-salinity (eq. w(NaCl) from 0.4 to 5.0%) and CO2 dominated. Stage (iii) in which ore emplacement took place and is characterized by dominant multisolid H2O–NaCl hypersaline, halite-bearing fluid inclusions (eq. w(NaCl) from 29.3 to 44.3%) with an H2O–NaCl–CO2 endmember and features indicative of magmatic-hydrothermal brines. Many of these inclusions homogenize by halite dissolution, with pressures as high as 320 MPa, and the coexistence of both fluids in the same fluid inclusion assemblages (FIA) could indicate phase separation caused by fluid pressure variations. Although there is no direct evidence of the magmatism responsible for these fluids, the geodynamic settings could favor deep-seated magmatism. Stage (iv) is characterized by low-salinity (eq. w(NaCl) from 0.18 to 15.57%) and low-temperature (68 to 160°C) primary two-phase fluid inclusions hosted by late-stage quartz (QzIV), suggesting a late-meteoric fluid circulation phase responsible for the leaching, oxidation and supergene enrichment observed at surficial levels. Throughout the PT evolution of the system a decrease in pressure and temperature was registered, especially in fluid inclusions hosted in quartz from the sulfide bearing veins, suggesting that the transition from ductile to brittle regimes might have favored ore deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. Please see electronic supplement data ESM_1.xls1 (Supple. 1) http://link.springer.com/.

REFERENCES

  1. Almeida, E., Pous, J., Monteiro, Santos F., Fonseca, P., Marcuello, A., Queralt, P., Nolasco, R., and Mendes-Victor, L., Electromagnetic imaging of a compressional tectonic in SW Iberia, Geophys. Res. Lett., 2001, vol. 28, 439–442. https://doi.org/10.1029/2000GL012037

    Article  Google Scholar 

  2. Anderson, T.B., Kink bands and related geological structures, Nature, 1964, vol. 202, pp. 272–274. https://doi.org/10.1038/2101249a0

    Article  Google Scholar 

  3. Andrade, A. S., Remarques sur le chemisme des gabros d’Odivelas (Massif de Beja), Mem. Not. Publ. Mus. Lab. Mineral. Geol. Univ. Coimbra, 1976, vol. 81, pp. 75–84.

    Google Scholar 

  4. Andrade, A.S., Sur l’âge des orthogneiss d’Alcáçovas (Alentejo)—et des filons (basiques et acides que les recounpent, Mem. Not. Mus. Lab. Mineral. Geol., Univ. Coimbra, 1974, vol. 78, pp. 29–36.

    Google Scholar 

  5. Apalategui, O., Eguiluz, L., and Quesada, C., Ossa Morena Zone, structure, Pre-Mesozoic Geology of Iberia, R.D. Dallmeyer and E. Martínez-García, Eds., Springer–Verlag, 1990, vol. 2, 80–219.

  6. Araújo, A., Piçarra, J.M., Borrego, J., Pedro, J., and Oliveira, J.T., As Regiões Central e sul da Zona de Ossa Morena. Mineralizações no sector português da Zona de Ossa–Morena. In Geologia de Portugal, Dias, R. Araújo, A. Terrinha, P., and Kullberg, J.C., Eds., (v. 1). Lisboa: Escolar Editora, 2013, pp. 577–619

  7. Arribas, A., Mineralogía y metalogenia de los yacimientos españoles de uranio: Los indicios con davidita de Villanueva del Fresno (Badajoz), Estudios Geológicos, 1963, vol. 19, pp. 33–51.

    Google Scholar 

  8. Bakker, R.J., The use of quantities, units and symbols in fluid inclusion research, Berichte der Geologische Bundesanstalt, 2011, vol. 87, pp. 5–11.

    Google Scholar 

  9. Bakker, R.J., AqSo_NaCl: computer program to calculate pTV-x properties in the H2O–NaCl fluid system applied to fluid inclusion research and pore fluid calculation, Comput. Geosci., 2018, vol. 115, pp. 122–133. https://doi.org/10.1016/j.cageo.2018.03.003

    Article  Google Scholar 

  10. Baumgartner, M. and Bakker, R.J., CaCl2-hydrate nucleation in synthetic fluid inclusions, Chem. Geol., 2009, vol. 265, pp. 335–344. https://doi.org/10.1016/j.chemgeo.2009.04.012

    Article  Google Scholar 

  11. Becker, S.P., Fall, A., and Bodnar, R.J., Synthetic fluid inclusions. XVII.1 PVTX properties of high salinity H2O–NaCl solutions (>30 wt % NaCl): application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits, Econ. Geol., 2008, vol. 103, no. 3, pp. 539–554. https://doi.org/10.2113/gsecongeo.103.3.539

    Article  Google Scholar 

  12. Bodnar, R.J., Fluid–Inclusion evidence for a magmatic source for metals in porphyry copper deposits. Magma Fluids and Ore Deposits, Thompson, J.F.H. Ed., Short Course Series. Mineral. Ass. Canada, 1995, vol. 23, pp. 139–152.

    Google Scholar 

  13. Bodnar, R.J., Lecumberri–Sanchez, P., Moncada, D., and Steele–MacInnis, M., Fluid inclusions in hydrothermal ore deposits, Treatise on Geochemistry, 2nd ed., 2014, vol. 13, pp. 119–142.

    Book  Google Scholar 

  14. Bodnar, R.J. and Beane, R.E. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper–type mineralization at Red mountain, Arizona, Econ. Geol., 1980, vol. 75, pp. 876–893. https://doi.org/10.2113/gsecongeo.75.6.876

    Article  Google Scholar 

  15. Bodnar, R.J. and Vityk, M.O., Interpretation of microthermometric data for H2O–NaCl fluid inclusions, In Fluid Inclusions in Minerals: Methods and Applications, De Vivo, B. and Frezzotti, M.L., Eds., Sienna, 1994, pp. 117–130.

    Google Scholar 

  16. Borrego, J., Araújo, A., and Fonseca, P., A geotraverse trough the south and central sectors of the Ossa–Morena Zone in Portugal (Iberian Massif), The Virtual Explorer e-journal, 2005, vol. 19, p. 10.

  17. Caldeira, R., Ribeiro, M.L., and Moreira, M.E., Geoquímica das sequências máficas e félsicas entre Alvito, Torrão e Alcáçovas (SW da ZOM), Comunicações Geológicas, 2007, vol. 94, pp. 5–28.

    Google Scholar 

  18. Calgari, A.A., Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran, J. Asian Earth. Sci., 2004, vol. 23, pp. 179–189. https://doi.org/10.1016/S1367-9120(03)00085-3

    Article  Google Scholar 

  19. Cambeses, A., Scarrow, J.H., Montero, P., Molina, J.F., and Moreno, J.A., SHRIMP U–Pb zircon dating of the Valencia del Ventoso plutonic complex, Ossa–Morena Zone, SW Iberia: early Carboniferous intra-orogenic extension related ‘calc–alkaline’ magmatism, Gondwana Res., 2014, vol. 28, no. 2, pp. 735–756. https://doi.org/10.1016/j.gr.2014.05.013

    Article  Google Scholar 

  20. Canet, C., Franco, S.I., Prol-Ledesma, R.M., González-Partida, E., and Villanueva-Estrada, R.E., A model of boiling for fluid inclusion studies: Application to the Bolaños Ag–Au–Pb–Zn epithermal deposit, Western Mexico, J. Geochem. Explor., 2001, 110, pp. 118–125. https://doi.org/10.1016/j.gexplo.2011.04.005

    Article  Google Scholar 

  21. Carbonell, R., Simancas, F., Juhlin, C., Pous, J. P., Perez Estaun, A., Gonzalez Lodeiro, F., Muñoz, G., Heise, W., and Ayarza, P., Geophysical evidence of a mantle derived intrusion in SW Iberia, Geophys. Res. Lett., 2004, vol. 31, L11 601. https://doi.org/10.1029/2004GL019684

    Article  Google Scholar 

  22. Carrilho Lopes, J., Sant’Ovaia, H., and Gomes, C., Update of geochemical and geochronological data of the Santa Eulália Plutonic Complex (Alentejo, Portugal). Colóquio – ASM, Tectónica, (Paleo)magnetismo dos Materiais (Abstract Book), Coimbra, 2013, pp. 2–5.

  23. Cepedal, A., Fuertes–Fuente, M., Martin-Izard A., García–Nieto J., and Boiron, M.C., J. Geochem. Explor., 2013, vol. 124, pp. 101–126. https://doi.org/10.1016/j.gexplo.2012.08.010

    Article  Google Scholar 

  24. Chen, H.Y., Kyser, T.K., and Clark, A.H., Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (–Ag–Au) deposits, south–central Peru, Miner. Deposita, 2011, vol. 46, pp. 677–706. https://doi.org/10.1007/s00126-011-0343-x

    Article  Google Scholar 

  25. Chen, W., Wang, Y., and Chen, W., Density calculation for NaCl–H2O solutions in the liquid solid two–phase field in NaCl–H2O three-phase inclusions, Acta Geol. Sinica, 2015, vol. 89, pp. 911–917. https://doi.org/10.1111/1755-6724.12489

    Article  Google Scholar 

  26. Cline, J.S. and Bodnar, R.J., Can economic porphyry copper mineralization be generated by a typical calc–alkaline melt? J. Geophys. Res., 1991, vol. 96, pp. 8113–8126. https://doi.org/10.1029/91JB00053

    Article  Google Scholar 

  27. Cline, J.S. and Bodnar, R.J., Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit, Econ. Geol., 1994, vol. 89, pp. 1780–1802. https://doi.org/10.2113/gsecongeo.89.8.1780

    Article  Google Scholar 

  28. Cloke, P. L. and Kesler, S. E., The halite trend in hydrothermal solutions, Econ. Geol., 1979, vol. 74, pp. 1823–1831. https://doi.org/10.2113/gsecongeo.74.8.1823

    Article  Google Scholar 

  29. Cosgrove, J.W., The expression of hydraulic fracturing in rock and Sediments, Fractography: Fracture Topography as a Tool in Fracture Mechanics and Stress Analysis, Ameen, M.S., Ed., Geol. Soc. Spec. Publ., 1995, vol. 92, pp. 187–196. https://doi.org/10.1144/GSL.SP.1995.092.01.10

  30. Cosgrove, J.W., Tectonics: Fractures (Including joints), Encyclopedia of Geology, Selley, R.C., Cocks, L.R.M., and Plimer, I.R., Eds., Elsevier Academic Press, 2005, pp. 352–361.

    Google Scholar 

  31. Davis, D.W., Lowenstein, T.K., and Spencer, R.J., Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O, and NaCl–CaCl2–H2O, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 591–601. https://doi.org/10.1016/0016-7037(90)90355-O

    Article  Google Scholar 

  32. Delgado, J.F.N., Système Silurique du Portugal. Étude de Stratigraphie Paléontologique. Commission du Service Géologique du Portugal, 1908.

    Google Scholar 

  33. Delgado, J.F.N., Terrains paléozoiques du Portugal. Étude sur les fossiles des schistes a Néréites de San Domingos et des schistes à Néréites et à graptolites de Barrancos. Commission du Service Géologique du Portugal, 1910.

  34. Dewey, J.F., Nature and origin of kink bands, Tectonophysics, 1965, vol. 1, pp. 459–494. https://doi.org/10.1016/0040-1951(65)90019-3

    Article  Google Scholar 

  35. Dias, R., Ribeiro, A., Romão, J., Coke, C., and Moreira, N., A review of the arcuate structures in the Iberian Variscides; constraints and genetic models, Tectonophysics, 2016, vol. 681C, pp. 170–194. https://doi.org/10.1016/j.tecto.2016.04.011

    Article  Google Scholar 

  36. Dias, R., Moreira, N., Ribeiro, A., and Basile, C., Late Variscan deformation in the Iberian Peninsula; a late feature in the Laurasia–Gondwana dextral collision, Int. J. Earth Sci. (Geol Rundsch), 2017, vol. 106, no. 2, pp. 549–567. https://doi.org/10.1007/s00531-016-1409-x

    Article  Google Scholar 

  37. Fernandes, G., Mineralizações de Cobre da Mina de Miguel Vacas: Caracterização Petrográfica e Geoquímica. Master’s Degree Thesis, Lisbon: Faculty of Sciences of Uni. of Lisbon, 2012.

  38. Frezzotti, M., L., Tecce, F., and Casagli, A., Raman spectroscopy for fluid inclusion analysis, J. Geochem. Explor., 2012, vol. 112, pp. 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009

    Article  Google Scholar 

  39. Gauß, R., The Development of Metallurgy on the Iberian Peninsula. Technological and Social Patterns of a Long–term Innovation Process. Metal Matters. Innovative Technologies and Social Change in Prehistory and Antiquity (Rahden/Westf. 2013), Burmeister, S. Hansen, S. Kunst, M. Müller Scheeßel, N., Eds., 2013, pp. 209–229.

  40. Gonçalves, F., Geological Map of Portugal at 1 : 50 000, 36-B (Estremoz), Lisboa: Serviços Geológicos de Portugal, 1972).

  41. Gonçalves, F. and Carvalhosa, A., O Proterozóico da Zona de Ossa–Morena no Alentejo. Síntese e actualização de conhecimentos, Mem. Acad. Ciênc. Lisboa, 1994, vol. 34.

    Google Scholar 

  42. Hansteen, T.H. and Klügel, A., Fluid inclusion thermobarometry as a tracer for magmatic processes, Rev. Mineral. Geochem., Mineral. Soc. Am., Putirka, K. and Tepley, F., Eds., 2008, vol 69, pp. 143–177.

  43. Heinrich, C.A., The physical and chemical evolution of low- to medium-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner. Deposita, 2005, vol. 39, pp. 864–889. https://doi.org/10.1007/s00126-004-0461-9

    Article  Google Scholar 

  44. Hodkiewicz, P.E., Groves, D.I., Davidson, G.J., Weinberg, R.F., and Hagemann, S.G., Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn Western Australia, Miner. Deposita, 2009, vol. 44, pp. 129–150. https://doi.org/10.1007/s00126-008-0211-5

    Article  Google Scholar 

  45. IGME Mapa Geológico de España, Escala 1 : 50 000 (segunda serie—Primera edición)—MAGNA50—Hoja 874 (Oliva de la Frontera) y Nota Explicativa, Madrid: IGME, 1990.

  46. Jensen, S., Neto de Carvalho, C., and Palacios, T., Trace fossils from the Barrancos and Colorada formations, Ordovician, Ossa–Morena Zone, Portugal and Spain, Comunicações Geológicas, 2016, vol. 103, no. 1, pp. 159–168.

    Google Scholar 

  47. Jesus, A.P., Munhá, J., Mateus, A., Tassinari, C., and Nutman, A.P., The Beja layered gabbroic sequence (Ossa–Morena Zone, Southern Portugal): geochronology and geodynamic implications, Geodinamica Acta, 2007, vol. 20, no. 3, pp. 139–157. https://doi.org/10.3166/ga.20.139-157

    Article  Google Scholar 

  48. Julivert, M., Fontboté, J.M., Ribeiro, A., and Nabais Conde, L.E., Mapa Tectónico de la Península Ibérica y Baleares. Scale 1 : 1 000 000, IGME, 1972.

  49. Kerkhof, A.M., Van den Isochoric phase diagrams in the systems CO2–CI& and CO*–N2: application to fluid inclusions, Geochim. Chosmochim. Acta, 1990, vol. 64, pp. 621–629. https://doi.org/10.1016/0016-7037(90)90358-R

    Article  Google Scholar 

  50. Klemm, L.M., Pettke, T., Heinrich, C.A., and Campos, E., Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu–Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 2007, vol. 102, pp. 1021–1045. https://doi.org/10.2113/gsecongeo.102.6.1021

    Article  Google Scholar 

  51. Lai, J. And Chi, G., CO2–rich fluid inclusions with chalcopyrite daughter mineral from Fenghuangshan Cu–Fe–Au deposit, China: implications for metal transport in vapor, Miner. Deposita, 2007, vol. 42, pp. 293–299. https://doi.org/10.1007/s00126-006-0109-z

    Article  Google Scholar 

  52. LNEG Geological Map of Portugal at 1 : 1 000 000, 3rd edition, Lisboa: Laboratório Nacional de Energia e Geologia, 2010.

  53. Maia, M., Vicente, S., Mirão J., Nogueira P., Raman Spectroscopy applied to the study of fluid inclusions associated with the Cu mineralizations of Mociços and Ferrarias, XIV CGPLP, Vila Real: 2018.

    Google Scholar 

  54. Maia M., Moreira N., Mirão, J., Noronha, F., and Nogueira, P., Fluid inclusions study of Cu–rich deposits from Sousel–Barrancos metallogenic belt (Ossa–Morena Zone, Portugal), Acta Mineralogica–Petrographica Abstract Ser. (ECROFI 2019), 2019a, vol. 10, p. 79.

  55. Maia, M., Moreira, N., Vicente, S., Mirão, J., Noronha, F., and Nogueira, P., Fluid constraints in the Mociços Cu deposit (Ossa–Morena Zone, Portugal), Acta Mineralogica–Petrographica Abstract Series (ECROFI 2019), 2019b, Vol. 10, p. 78.

  56. Mateus, A. and Noronha, F., Sistemas mineralizantes epigenéticos na Zona Centro–Ibérica; expressão da estruturação orogénica meso- a tardi-varisca, Ciências Geológicas: Ensino, Investigação e sua História, Cotelo Neiva, J. M., Ribeiro, A., Mendes Victor, L., Noronha, F., and Magalhães Ramalho, M., Eds., Associação Portuguesa de Geólogos, 2010, vol. 2, pp. 47–62.

  57. Martínez Catalán, J.R., Aerden, D.G.A.M., and Carreras, J., The “Castilian bend” of Rudolf Staub (1926): historical perspective of a forgotten orocline in Central Iberia, Swiss J. Geosci., 2015, vol. 108, nos. 2–3, pp. 289–303. https://doi.org/10.1007/s00015-015-0202-3

    Article  Google Scholar 

  58. Mateus, A., Matos, J.X., Rosa, C., and Oliveira, V., Cu-ores in quartz–carbonate veins at Estremoz–Alandroal and Barrancos–Sto Aleixo regions (Ossa Morena Zone): a result of Late–Variscan hydrothermal activity, VI Congresso Nacional de Geologia, Lisboa (Portugal), Ciências da Terra (UNL), Lisboa, n o esp. V, 2003, CD–ROM, F90–F93.

  59. Mateus, A., Munhá, J., Inverno, C., Matos, J.X., Martins, L., Oliveira, D., Jesus, A., and Salgueiro, R., Mineralizações no sector português da Zona de Ossa–Morena, Geologia de Portugal, In Dias, R. Araújo, A. Terrinha, P. Kullberg, J.C., Eds., Lisboa: Escolar Editora, 2013, vol. 1, pp. 577–619.

    Google Scholar 

  60. Matos, J.X. and Filipe, A., Carta de Ocorrências Mineiras do Alentejo e Algarve, Escala 1 : 400 000. Laboratorio Nacional de Energia e Geologia, 1st Edition, 2013.

    Google Scholar 

  61. Matos, J.X., Gonçalves, P, Salgueiro, R, and Batista, M.J., Enquadramento geológico e geoquímico das mineralizações de Cobre (Ouro) de Barrancos, na Zona de Ossa Morena, Portugal, Vulcânica, 2018 (II)—X Congresso Nacional de Geologia (Special Iss.), 2018, pp. 249–252.

  62. Melfos, V., Voudouris, P., Serafimovski, T., and Tased, G., Fluid Inclusions at the Plavica Au–Ag–Cu telescoped porphyry–epithermal system, Former Yugoslavian Republic of Macedonia (FYROM), Geosciences, 2019, vol. 9, p. 88. https://doi.org/10.3390/geosciences9020088

    Article  Google Scholar 

  63. Miranda, J.M., Galdeano, A., Rossignol, J.C., and Mendes Victor, L.A., Aeromagnetic anomalies in mainland Portugal and their tectonic implications, Earth Planet. Sci. Lett., 1989, vol. 95, nos. 1–2, pp. 161–172. https://doi.org/10.1016/0012-821X(89)90174-X

    Article  Google Scholar 

  64. Moreira, N., Vicente, S., Maia, M., Nogueira, P., and Araújo, A., Controlo estrutural de mineralizações de Cobre na Mina dos Mociços (Zona de Ossa–Morena); dados preliminares. VII Congresso Jovens Investigadores em Geociências, 2017. LEG 2017 (abstract book), pp. 45–48.

  65. Moreira, N., Vicente, S., Maia, M., Oliveira, R., Nogueira, P., Borges, F., Caldeira, B., and Araújo, A., Mineralização de Cobre na Mina dos Mociços (Zona de Ossa–Morena); uma abordagem transversal para a sua caracterização, Vulcânica, 2018 (II)—X Congresso Nacional de Geologia (Sp. Iss.), 2018, pp. 237–240.

  66. Moreira, N., Pedro, J., Santos, J.F., Araújo, A., Dias, R., Ribeiro, S., Romão, J., and Mirão, J., 87Sr/86Sr applied to age discrimination of the Palaeozoic carbonates of the Ossa–Morena Zone (SW Iberia Variscides), Int. J. Earth Sci. (Geol Rundsch), 2019, vol. 108, no. 3, pp. 963–987. https://doi.org/10.1007/s00531-019-01688-9

    Article  Google Scholar 

  67. Nash, T.J., Fluid inclusion petrology—data from porphyry copper deposits and applications to exploration, U.S. Geol. Survey Prof., Pap., 1976, 907–D, pp.16).

    Google Scholar 

  68. Nash, J. T., and Theodore, T. G., Ore fluids in a porphyry copper deposit at Copper Canyon, Nevada, Econ. Geol., 1971, vol. 66, pp. 385–399. https://doi.org/10.2113/gsecongeo.66.3.385

    Article  Google Scholar 

  69. Oliveira, V., Contribuição para o conhecimento geológico–mineiro da região de Alandroal–Juromenha (Alto Alentejo), Estudos Notas e Trabalhos, Serviço de Fomento Mineiro, 1984a, Vol. 26, nos. 1–4, pp. 102–126.

    Google Scholar 

  70. Oliveira, V., Transversal Juromenha–Alandroal, Cad. Lab. Xeol. de Laxe, 1984b, vol. 8, pp. 339–346.

    Google Scholar 

  71. Oliveira, V., Prospecção de minérios metálicos a sul do Tejo, Geociências, 1986, vol. 1, nos. 1–2, pp. 15–22.

    Google Scholar 

  72. Oliveira, J.T., Oliveira, V., and Piçarra, J.M., Traços gerais da evolução tectono–estratigráfica da Zona de Ossa Morena, em Portugal: síntese crítica do estado actual dos conhecimentos, Comum. Serv. Geol, Port., 1991, vol. 77, pp. 3–26.

    Google Scholar 

  73. Perdigão, J.C., Oliveira, J.T., and Ribeiro, A., Notícia explicativa da folha 44-B (Barrancos) da Carta Geológica de Portugal à escala 1 : 50 000, Serviços Geológicos de Portugal, Lisboa: 1982.

    Google Scholar 

  74. Pereira, M.F., Solá, A.R., Chichorro, M., Lopes, L., Gerdes, A., and Silva, J.B., North Gondwana assembly, break up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia, Gondwana Res., 2012, vol. 22, nos. 3–4, pp. 866–881. https://doi.org/10.1016/j.gr.2012.02.010

  75. Pereira, M.F., Gama, C., and Rodriguez, C., Coeval interaction between magmas of constrasting composition (Late Carboniferous–Early Permian Santa Eulália–Monforte massif, Ossa–Morena Zone): field relationships and geochronological constraints, Geologica Acta, 2017, vol. 15, no. 4, pp. 409–428. https://doi.org/10.1344/GeologicaActa2017.15.4.10

    Article  Google Scholar 

  76. Piçarra, J.M., Oliveira, V., and Oliveira, J.T., Paleozóico, Estratigrafia, Zona de Ossa Morena, Carta Geológica de Portugal à escala 1 : 200 000, Notícia Explicativa da Folha 8, Oliveira, J.T., Serviços Geológicos de Portugal, 1992, pp. 17–25.

    Google Scholar 

  77. Piçarra, J.M., Štorch, P., Gutiérrez–Marco, J.C., and Oliveira, J.T., Characterization of the Parakidograptus acuminatus graptolite Biozone in the Silurian of the Barrancos region (Ossa Morena Zone, South Portugal), Comunicações do Instituto Geológico e Mineiro, 1995, vol. 81, pp. 3–8.

    Google Scholar 

  78. Piçarra, J.M., Gutiérrez-Marco, J.C., Lenz, A.C., and Robardet, M., Pridoli graptolites from the Iberian Peninsula: a review of previous data and new records, Can. J. Earth Sci., 1998, vol. 35, pp. 65–75. https://doi.org/10.1139/e97-082

    Article  Google Scholar 

  79. Piçarra, J.M., Estudo estratigráfico do sector de Estremoz–Barrancos, Zona de Ossa Morena, Portugal. Vol. I –Litoestratigrafia do Intervalo Câmbrico médio?–Devónico Inferior, Vol. II—Bioestratigrafia do Intervalo Ordovícico–Devónico Inferior. Tese de Doutoramento, Universidade de Évora, 2000.

  80. Pollard, P.J., Sodic(–calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids, Miner. Deposita. 2001, vol. 36, pp. 93–100. https://doi.org/10.1007/s001260050289

    Article  Google Scholar 

  81. Pollard, P.J., An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces, Miner. Deposita, 2006, vol. 41, pp. 179–187. https://doi.org/10.1007/s00126-006-0054-x

    Article  Google Scholar 

  82. Ramsay, J.G. and Huber, M., The Techniques of Modern Structural Geology, Vol. 2. Folds and Fractures, Academic Press, 1987.

  83. Ribeiro, A., Antunes, M.T., Ferreira, M.P., and Rocha, R.B., Soares A.F., Zbyszewski, G., Moitinho de Almeida, F., Carvalho, D., and Monteiro, J.H., Introduction à la géologie générale du Portugal, Serviços Geológicos de Portugal, 1979, pp. 114.

    Google Scholar 

  84. Ribeiro, A., Munhá, J., Dias, R., Mateus, A., Pereira E., Ribeiro L., Fonseca P., Araújo A., Oliveira T., Romão J., Chaminé H., Coke, C., and Pedro, J., Geodynamic evolution of the SW Europe Variscides, Tectonics, 2007, vol. 26, TC6009. https://doi.org/10.1029/2006TC002058

    Article  Google Scholar 

  85. Ribeiro, A., Munhá, J., Fonseca, P.E., Araújo, A., Pedro, J.C., Mateus, A., Tassinari, C., Machado, G., and Jesus, A., Variscan ophiolite belts in the Ossa–Morena Zone (Southwest Iberia): Geological characterization and geodynamic significance, Gondwana Res., 2010, 17, pp. 408–421. https://doi.org/10.1016/j.gr.2009.09.005

    Article  Google Scholar 

  86. Richards, J., Clues to hidden copper deposits, Nature Geosci., 2016, vol. 9, pp. 195–196. https://doi.org/10.1038/ngeo2656

    Article  Google Scholar 

  87. Roedder, E., Fluid inclusions, Rev. Mineral., Ribbe, P.H., Ed., Mineralogical Society of America, 1984, vol. 12.

    Book  Google Scholar 

  88. Roseiro, J., Moreira, N., Nogueira, P., Maia, M., Araújo, A., and Pedro, J., Depositional environment and passive-to-active margin transition as recorded by trace elements chemistry of lower–middle Palaeozoic detrital units from the Ossa–Morena Zone (SW Iberia), Comunicações Geológicas, 2020, vol. 107, no. II, pp. 39–46. ISSN: 0873-948X; e–ISSN: 1647-581X

  89. Rosso, K.M., Bodnar, R.J. Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3961–3975. https://doi.org/10.1016/0016-7037(95)94441-H

    Article  Google Scholar 

  90. Robb, L., Introduction to Ore–Forming Processes, Blackwell Publishing, 2005.

    Google Scholar 

  91. Rusk, B.G., Reed, M.H., Dilles, J.H., Klemm, L.M., and Heinrich, C.A., Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT, Chem. Geol., 2004, vol. 210, pp. 173–199. https://doi.org/10.1016/j.chemgeo.2004.06.011

    Article  Google Scholar 

  92. Santos, J.F., Moita, P., and Marques, J., Sr and Nd isotope composition of the Alcáçovas calc-alkaline rocks (Ossa–Morena Zone, Portugal), Proc. 22nd Goldschmidt Conference Abstracts, Mineral. Mag., 2012, vol. 76, no. 6, p. 2325.

    Google Scholar 

  93. Shepherd, T.J., Rankon, A.H., and Alderton, D.H.M., A Practical Guide to Fluid Inclusion Studies, Glasgow & London: Blackie, 1985.

    Google Scholar 

  94. Shinohara, H., Kazahaya, K., and Lowenstern, J.B., Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization, Geology, 1995, vol. 23, pp. 1091–1094. https://doi.org/10.1130/0091-7613(1995)023<1091:VTIACM>2.3.CO;2

    Article  Google Scholar 

  95. Sillitoe, R.H. and Hedenquist, J.W., Linkages between volcanotectonic settings, ore–fluid compositions and epithermal precious metal deposits, Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth, Simmons, S.F. and Graham, I., Eds., Econ. Geol. Spec. Publ., 2003, vol. 343, pp. 315–343.

    Google Scholar 

  96. Silva, E.A., Miranda, J.M., Luis, J.F., and Galdeano, A., Correlation between the Palaeozoic structures from West Iberian and Grand Banks margins using inversion of magnetic anomalies, Tectonophysics, 2000, vol. 321, pp. 57–71. https://doi.org/10.1016/S0040-1951(00)00080-9

    Article  Google Scholar 

  97. Simancas, J.F., Carbonell, R., González Lodeiro, F.,Perez Estaun, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A., Martínez Poyatos, D., Almodóvar, G. R., Pascual, E., Sáez, R., and Expósito, I. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS), Tectonics, 2003, vol. 22, no. 6, p. 1062. https://doi.org/10.1029/2002TC001479

    Article  Google Scholar 

  98. Spencer, E. T., Wilkinson, J.J., Nolan, J., and Berry, A. J., The controls of post–entrapment diffusion on the solubility of chalcopyrite daughter crystals in natural quartz–hosted fluid inclusions, Chem. Geol., 2015, vol. 412. https://doi.org/10.1016/j.chemgeo.2015.07.005

  99. Steele-MacInnis, M., Ridley, J., Lecumberri-Sanchez, P., Schlegel, T.U., and Heinrich, C.A., Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions, Earth Sci. Rev., 2016, vol. 159, pp. 14–35. https://doi.org/10.1016/j.earscirev.2016.04.011

    Article  Google Scholar 

  100. Steele-MacInnis, M., Fluid inclusions in the system H2O–NaCl–CO2: An algorithm to determine composition, density and isochore, Chem. Geol., 2018, vol. 498, pp. 31–44. https://doi.org/10.1016/j.chemgeo.2018.08.022

    Article  Google Scholar 

  101. Stefanova, E., Driesner, T., Zajacz, Z., Heinrich, C.A., Petrov, P., and Vasilev, Z., Melt and fluid inclusions in hydrothermal veins: the magmatic to hydrothermal evolution of the Elastite porphyry Cu–Au deposit, Bulgaria. Econ. Geol., 2014, vol. 109, pp. 1359–1381. https://doi.org/10.2113/econgeo.109.5.1359

    Article  Google Scholar 

  102. Taylor, R., Boxworks and related features, Gossans and Leached Cappings, Sringer, 2011, pp. 77–106. https://doi.org/10.1007/978-3-642-22051-7_7

    Book  Google Scholar 

  103. Telhado, F.M., Petrologia e geoquímica do Ortognaisse das Alcáçovas e rochas associadas: contributo para a compreensão da evolução geodinâmica da zona de Ossa Morena, Master’s Degree Thesis, Lisbon: Faculty of Sciences of Uni. of Lisbon, 2018.

  104. Thiery, R., Vidal, J., and Dubessy, J., Phase equilibria modelling applied to fluid inclusions: liquid–vapour equilibria and calculation of the molar volume in the CO2-CH4-N2 system, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 1073–1082. https://doi.org/10.1016/0016-7037(94)90573-8

    Article  Google Scholar 

  105. Tornos, F., Inverno, C.M.C., Casquet, C., Mateus, A., Ortiz, G., and Oliveira, V., The metallogenic evolution of the Ossa–Morena Zone, J. Iber. Geol., 2004, vol. 30, pp. 143–181.

    Google Scholar 

  106. Tornos, F. and Casquet, C., A new scenario for related IOCG and Ni–(Cu) mineralization: the relationship with giant midcrustal mafic sills, Variscan Iberian Massif, Terra Nova, 2005, vol. 17, pp. 236–241.

    Article  Google Scholar 

  107. Ulrich, T., Gunther, D., and Heinrich, C.A., The evolution of a porphyry Cu–Au deposit, based on La–ICP–MS analysis of fluid inclusions, Bajo de la Alumbrera, Argentina, Econ. Geol., 2001, vol. 96, pp. 1743–1774. https://doi.org/10.2113/gsecongeo.96.8.1743

    Article  Google Scholar 

  108. Vicente, S., Maia, M., Araújo, A., Matos, J., X., and Nogueira, P., Petrografia das alterações hidrotermais da Mina de Mociços, Estudo Preliminar. VII Congresso Jovens Investigadores em Geociências, LEG 2017 (Abstract Book), Estremoz: 2017, pp. 70–72.

  109. Vikent’eva, O.V., Prokofiev, V.Yu., Gamyanin, G.N., Goryachev, N.A., and Bortnikov, N.S., Intrusion-related gold–bismuth deposits of North-East Russia: PTX parameters and sources of hydrothermal fluids, Ore Geol. Rev., 2018, vol. 102, pp. 240–259. https://doi.org/10.1016/j.oregeorev.2018.09.004

    Article  Google Scholar 

  110. Walther, J.V. and Wood, B.J. Fluid–Rock Interactions During Metamorphism, Advances in Physical Geochemistry, Saxena, S.L. Baron, L. Bell, P.M. Chatterjee, N.D. Kretz, R. Lindsley, D.H. Matsui, Y. Navrotsky, A. Newton, R.C. Perchuk, L.L. Powell, R. Robie, R. Thompson, A.B. Wood, B.J., Eds., New York: Springer, 1986, vol. 5.

    Google Scholar 

  111. William-Jones, A.E. and Henrich, C.A., Vapor transport of metals and the formation of magmatic–hydrothermal ore deposits, Econ. Geol., 2005, vol. 100, no. 7, pp. 1287–1312. https://doi.org/10.2113/gsecongeo.100.7.1287

    Article  Google Scholar 

  112. Wilkinson, J.J., Fluid inclusions in hydrothermal ore deposits, Lithos, 2001, vol. 55, pp. 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5

    Article  Google Scholar 

  113. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The support provided by the HERCULES Laboratory (University of Évora) and by the Geosciences Department of the University of Évora for the availability for using the facilities and equipment necessary for this work, as well as, to Laboratório Nacional de Energia e Geologia (LNEG; Portuguese Laboratory for Energy and Geology) for drill core access. The authors acknowledge the anonymous reviewers for their constructive and valuable comments that greatly improved the manuscript. The authors are also thankful to Dr. Olga Plotinskaya (Associate editor of Geol. Ore Deposits) for the insightful comments on the manuscript.

The authors also deeply thank José Roseiro for the comments and reviews on early versions of this manuscript.

Funding

This work is a contribution to the project “ZOM-3D Metallogenic Modelling of Ossa-Morena Zone: Valorization of the Alentejo Mineral Resources” (ALT20-03-0145-FEDER-000028), funded by Alentejo 2020 (Regional Operational Program of Alentejo) through the FEDER/FSE/FEEI. M. Maia, P. Nogueira and N. Moreira acknowledge the funding provided by the Institute of Earth Sciences (ICT), through the COMPETE 2020 project (UIDB/GEO/04683/2020) under the reference POCI-01-0145-FEDER-007690. M. Maia acknowledges the financial support of Fundação para a Ciência e Tecnologia (FCT; Portuguese Science and Technology Foundation) through the PhD grant SFRH/BD/145049/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maia.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ORCID:

Miguel Maia—0000-0001-9407-4913

Noel Moreira—0000-0003-0415-1474

José Mirão—0000-0003-0103-3448

Fernando Noronha—0000-0001-8960-7228

Pedro Nogueira—0000-0002-6162-0030

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, M., Moreira, N., Vicente, S. et al. Multi-Stage Fluid System Responsible for Ore Deposition in the Ossa-Morena Zone (Portugal): Constraints in Cu-Ore Deposits Formation. Geol. Ore Deposits 62, 508–534 (2020). https://doi.org/10.1134/S1075701520060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520060094

Keywords:

Navigation