Skip to main content
Log in

Effect of Hot Extrusion on Microstructure and Mechanical Properties of Mg–5Sn–xZr Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of Zr addition (0, 0.5 and 1 wt%) and extrusion ratio (6:1 and 12:1) on microstructure and mechanical properties of the Mg–5Sn alloy were studied. Results showed that the dendritic structure of the as-cast M–5Sn alloy gradually transformed into a nearly globular structure with Zr addition. The effect of Zr addition was evident through refining the microstructure, promoting the tendency to form partially divorced eutectic and increasing the Mg2Sn volume fraction, which improved the thermal stability of the alloy during homogenizing treatment at high temperatures. Hot extrusion was found to be very effective for enhancing both strength and ductility of the Mg–5Sn–xZr alloys. Grain refinement induced by twin dynamic recrystallization and dynamic precipitation of fine particles were realized as the main strengthening mechanisms of the extruded alloys. It was found that an increase of the extrusion ratio led to relatively coarser grains, lower yield strength, and higher hardening capacities. However, the Mg–5Sn–1Zr alloy extruded with the area-reduction ratio of 12 exhibited the best combination of tensile strength and elongation of 243 MPa and 10.6%, respectively. Moreover, tensile fracture studies revealed the intergranular cracking and quasi-cleavage fracture as the dominant fracture modes of the as-cast and extruded alloys, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Dev, M. Paliwal, J. Cryst. Growth 503, 28–35 (2018)

    Article  CAS  Google Scholar 

  2. B.Q. Shi, R.S. Chen, W. Ke, J. Alloy. Compd. 509, 3357–3362 (2011)

    Article  CAS  Google Scholar 

  3. A. Gökçe, Met. Mater. Int. 26, 1036–1044 (2020)

    Article  Google Scholar 

  4. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, J. Alloy. Compd. 440, 122–126 (2007)

    Article  CAS  Google Scholar 

  5. N. Hort, Y. Huang, T. Abu Leil, P. Maier, K.U. Kainer, Adv. Eng. Mater. 8, 359–364 (2006)

    Article  CAS  Google Scholar 

  6. P. Poddar, K.L. Sahoo, Mater. Sci. Eng. A 556, 891–905 (2012)

    Article  CAS  Google Scholar 

  7. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, K. Hono, Mater. Sci. Eng. A 566, 22–29 (2013)

    Article  CAS  Google Scholar 

  8. A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagr. 5, 466–476 (1984)

    Article  Google Scholar 

  9. M. Cong, Z. Li, J. Liu, X. Miao, B. Wang, Q. Xi, Russ. J. Non-Ferr. Met. 57, 445–455 (2016)

    Article  Google Scholar 

  10. C.L. Mendis, K. Hono, Fundamentals of Magnesium Alloy Metallurgy (Woodhead Publishing, Sawston, 2013), pp. 125–151

    Book  Google Scholar 

  11. C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng. A 435–436, 163–171 (2006)

    Article  Google Scholar 

  12. Y. Huang, H. Dieringa, K.U. Kainer, N. Hort, Fatigue Fract. Eng. M. 36, 308–315 (2013)

    Article  CAS  Google Scholar 

  13. Y. Jiang, Y.A. Chen, D. Fang, L. Jin, Mater. Sci. Eng. A 641, 256–262 (2015)

    Article  CAS  Google Scholar 

  14. H. Liu, Y. Chen, H. Zhao, S. Wei, W. Gao, J. Alloy. Compd. 504, 345–350 (2010)

    Article  CAS  Google Scholar 

  15. G. Nayyeri, R. Mahmudi, Mater. Sci. Eng. A 527, 669–678 (2010)

    Article  Google Scholar 

  16. E. Karakulak, Y.B. Küçüker, J. Magn. Alloys 6, 384–389 (2018)

    Article  CAS  Google Scholar 

  17. J. Jiang, G. Bi, J. Liu, C. Ye, J. Lian, Z. Jiang, J. Magn. Alloys 2, 257–264 (2014)

    Article  CAS  Google Scholar 

  18. X.Y. Qian, Y. Zeng, B. Jiang, Q.R. Yang, Y.J. Wan, G.F. Quan, F.S. Pan, J. Alloy. Compd. 820, 153122 (2020)

    Article  CAS  Google Scholar 

  19. G. Yarkadaş, L.C. Kumruoğlu, H. Şevik, Mater. Charact. 136, 152–156 (2018)

    Article  Google Scholar 

  20. H.-D. Zhao, G.-W. Qin, Y.-P. Ren, W.-L. Pei, D. Chen, Y. Guo, T. Nonferr. Metal. Soc. 20, s493–s497 (2010)

    Article  CAS  Google Scholar 

  21. P. Poddar, S. Bagui, K. Ashok, A.P. Murugesan, J. Alloy. Compd. 695, 895–908 (2017)

    Article  CAS  Google Scholar 

  22. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, K. Hono, Scripta Mater. 59, 1111–1114 (2008)

    Article  CAS  Google Scholar 

  23. Z. Zeng, N. Stanford, C.H.J. Davies, J.-F. Nie, N. Birbilis, Int. Mater. Rev. 64, 27–62 (2019)

    Article  CAS  Google Scholar 

  24. T. Homma, N. Kunito, S. Kamado, Scripta Mater. 61, 644–647 (2009)

    Article  CAS  Google Scholar 

  25. N. El Mahallawy, A. Ahmed Diaa, M. Akdesir, H. Palkowski, Mater. Sci. Eng. A 680, 47–53 (2017)

    Article  CAS  Google Scholar 

  26. Y. Zhang, X.-Y. Chen, Y.-L. Lu, X.-P. Li, T. Nonferr. Metal. Soc. 28, 2190–2198 (2018)

    Article  CAS  Google Scholar 

  27. I.J. Polmear, Light Alloys, 4th edn. (Butterworth-Heinemann, Sawston, 2005), pp. 237–297

    Book  Google Scholar 

  28. E.F. Emley, Principles of Magnesium Technology (Pergamon, Oxford, New York, 1996)

    Google Scholar 

  29. F. Pan, M. Yang, Mater. Sci. Eng. A 528, 4973–4981 (2011)

    Article  CAS  Google Scholar 

  30. M. Yang, X. Liang, Z. Yi, F. Pan, Mater. Design 32, 1967–1973 (2011)

    Article  CAS  Google Scholar 

  31. M.C. Flemings, Metall. Trans. 5, 2121–2134 (1974)

    Article  CAS  Google Scholar 

  32. M.A. Easton, D.H. StJohn, Acta Mater. 49, 1867–1878 (2001)

    Article  CAS  Google Scholar 

  33. J.W. Fu, Y.S. Yang, J. Cryst. Growth 322, 84–90 (2011)

    Article  CAS  Google Scholar 

  34. M. Qian, D.H. Stjohn, Int. J. Cast Met. Res. 22, 256–259 (2009)

    Article  CAS  Google Scholar 

  35. Y. Ali, D. Qiu, B. Jiang, F. Pan, M.-X. Zhang, J. Alloy. Compd. 619, 639–651 (2015)

    Article  CAS  Google Scholar 

  36. E. Karakulak, J. Magn. Alloys 7, 355–369 (2019)

    Article  CAS  Google Scholar 

  37. Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895–2906 (2000)

    Article  Google Scholar 

  38. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand, Metall. Mater. Trans. A 36, 1669–1679 (2005)

    Article  Google Scholar 

  39. M. Qian, D.H. StJohn, M.T. Frost, Mater. Sci. Forum 419–422, 593–598 (2003)

    Article  Google Scholar 

  40. M. Keyvani, R. Mahmudi, G. Nayyeri, Mater. Sci. Eng. A 527, 7714–7718 (2010)

    Article  Google Scholar 

  41. D.M. Stefanescu, Science and Engineering of Casting Solidification, 2nd edn. (Springer US, Berlin, 2009), pp. 1–52

    Google Scholar 

  42. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met. 1, 61–72 (2001)

    Article  Google Scholar 

  43. H. Liu, Y. Chen, Y. Tang, D. Huang, G. Niu, Mater. Sci. Eng. A 437, 348–355 (2006)

    Article  Google Scholar 

  44. R. Kaibyshev, Advances in Wrought Magnesium Alloys (Woodhead Publishing, Sawston, 2012), pp. 186–225

    Book  Google Scholar 

  45. O. Sitdikov, R. Kaibyshev, Mater. Trans. 42, 1928–1937 (2001)

    Article  CAS  Google Scholar 

  46. Q. Ma, B. Li, E.B. Marin, S.J. Horstemeyer, Scripta Mater. 65, 823–826 (2011)

    Article  CAS  Google Scholar 

  47. M. Shahzad, L. Wagner, Mater. Sci. Eng. A 506, 141–147 (2009)

    Article  Google Scholar 

  48. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E. Konopleva, Mater. Sci. Eng. A 337, 121–133 (2002)

    Article  Google Scholar 

  49. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Scripta Mater. 61, 249–252 (2009)

    Article  CAS  Google Scholar 

  50. A. Malik, Y. Wang, C. Huanwu, F. Nazeer, B. Ahmed, M.A. Khan, W. Mingjun, Mater. Sci. Eng. A 771, 138649 (2020)

    Article  CAS  Google Scholar 

  51. J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57, 2739–2747 (2009)

    Article  CAS  Google Scholar 

  52. A.G. Beer, Advances in Wrought Magnesium Alloys, 1st edn. (Woodhead Publishing, Sawston, 2012), pp. 304–322

    Book  Google Scholar 

  53. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet, Acta Mater. 55, 3899–3910 (2007)

    Article  CAS  Google Scholar 

  54. H. Somekawa, T. Mukai, Mater. Sci. Eng. A 561, 378–385 (2013)

    Article  CAS  Google Scholar 

  55. M. Schneider, E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Int. J. Plast. 124, 155–169 (2020)

    Article  CAS  Google Scholar 

  56. N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Scripta Mater. 57, 1004–1007 (2007)

    Article  CAS  Google Scholar 

  57. L. Zhang, K.-K. Deng, K.-B. Nie, F.-J. Xu, K. Su, W. Liang, Mater. Sci. Eng. A 636, 279–288 (2015)

    Article  CAS  Google Scholar 

  58. S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman, Y. Zhou, Mater. Sci. Eng. A 527, 2951–2961 (2010)

    Article  Google Scholar 

  59. B. Wang, R. Xin, G. Huang, Q. Liu, Mater. Sci. Eng. A 534, 588–593 (2012)

    Article  CAS  Google Scholar 

  60. M. Moazami-Goudarzi, F. Akhlaghi, Tribol. Int. 102, 28–37 (2016)

    Article  CAS  Google Scholar 

  61. N.S. Prasad, N. Naveen Kumar, R. Narasimhan, S. Suwas, Acta Mater. 94, 281–293 (2015)

    Article  CAS  Google Scholar 

  62. ASM International, ASM Handbook, Fractography, vol. 12 (ASM International, Cleveland, 1992)

    Google Scholar 

  63. R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra, Sci. Rep. 6, 23154 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moazami-Goudarzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeddin, O., Moazami-Goudarzi, M. & Nayyeri, M.J. Effect of Hot Extrusion on Microstructure and Mechanical Properties of Mg–5Sn–xZr Alloys. Met. Mater. Int. 27, 4996–5007 (2021). https://doi.org/10.1007/s12540-020-00919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00919-y

Keywords

Navigation