Skip to main content
Log in

Sedimentological, Geochemical and Hydrogeochemical Studies of Alluvial Fans for Mineral and Environmental Purposes (Case Study of Southwestern Iran)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The alluvial-fan sediments play a very important role in mineral reserves and underground water resources, though a comprehensive study on such sediments, especially from a geochemical point of view, is still lacking. In this research, a total of 22 particularly important alluvial fans across the Khuzestan Plain in the southwestern Iran were studied through field surveys, petrographic evaluations, and geochemical assessments. These investigations included particle size distribution studies, microscopic observation of 193 samples, subsurface study of 60 boreholes along 10 different sections, facies analysis on 46 different sections, and comprehensive geochemical studies through XRD, XRF, ICP Mass, and wet chemical analyses. Based on these studies, the sediments were found to be dominantly composed of gravel, muddy sand, silt, and clay. The sediments exhibited good roundness and good to fair sorting. The most abundant oxide in the study area being MgO followed by SiO2, Al2O3, and Fe2O3. According to the studies, most of the samples fell in the range of iron-bearing sandstones with rare cases of iron-bearing shales. Investigation of the geochemical indices showed the long sediment transport path from the source, humid climate, and moderate to extensive weathering of the deposit. The depositional setting was found to be dominantly an active continental margin and, to a lesser extent, a continental island arc. Investigating of the studied sediments provenance indicate a felsic to slightly basic source rock. The environmental studies were indicative of relatively low contamination of the region and abundance of rare earth elements including Y, Sc, Nd, La, and Ce, and the abundance of heavy elements including Cr, Zn, Pb, and Cd. Based on the mineralogical studies on the samples, the inter-grain cement in both gravel and conglomerate particles was found to be composed of calcite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.

Similar content being viewed by others

REFERENCES

  1. Adel, I.M., Akarish, Amr., and El-Gohary, M., Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting. J. Afr. Earth Sci., 2008, no. 52, pp. 43–54.

  2. Adler, J.B., Fluvial stratigraphy and regional volcanism at hypanis delta, Proc. Lunar Planet. Sci. Conf., 2017, pp. 1017–1018.

  3. Adler, J.B., Bell, J.F., Fawdon, P., Davis, j., Warner, N.H., Sefton-Nash, E., Harrison, T.N., Hypotheses for the origin of the Hypanis fan-shaped deposit at the edge of the Chryse escarpment, Mars: Is it a delta, ICARUS: Elsevier, 2019, vol. 319, pp. 885–905.

  4. Alavi, M., Regional stratigraphy of the Zagros fold–thrust belt of Iran and its proforeland evolution, Am. J. Sci., 2004, vol. 304, pp. 1–20.

    Article  Google Scholar 

  5. Al-Juboury, A. I., McCann, T., and Ghazal, M. M., Provenance of Miocene sandstones in northern Iraq: constraints from framework petrography, bulk-rock geochemistry and mineral chemistry, Russ. Geol. Geophys., 2009, vol. 50, pp. 517–534.

    Article  Google Scholar 

  6. Amajor, L.C., Major and trace elements geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. J. Afr. Earth Sci., 1987, no. 6, pp. 633–641.

  7. Armstrong-Altrin, J.S. and Verma, S.P., Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings, Sediment. Geol., 2005, vol. 177, no. 1/2, 115–129.

    Article  Google Scholar 

  8. Azer, M.K., Gahlan, H.A., Asimow, P.D., Mubarak, H.S., and Al-Kahtany, K.M., Multiple stages of carbonation and element redistribution during formation of ultramafic-hosted magnesite in Neoproterozoic ophiolites of the Arabian-Nubian Shield, Egypt, J. Geol., 2019, vol. 127, pp. 81–107.

    Article  Google Scholar 

  9. Bar-Or, I., Iron-coupled anaerobic oxidatin of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals, Environ. Sci. Technol., 2009, no. 51, pp. 12293–12301.

  10. Bassam, A, A., Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian, Shield., Saudi, Arabia., Int. Geol. Rev., 2019, vol., 62, no. 5, pp. 630–648.

    Google Scholar 

  11. Beulig, F., Røy, H., Glombitza, C., Jørgensen, B. B., Control on rate and pathway of anaerobic organic carbon degradation in the seabed, Proc. Natl Acad. Sci. USA, 2018, no. 115, pp. 367–372.

  12. Bhatia, M.R., Plate tectonic and geochemical composition of the sandstone, J Geol., 1983, no. 91, pp. 611–627.

  13. Boggs, Jr.S., Petrology of Sedimentary Rocks, Cambr. Univ. Press, 2009.

    Book  Google Scholar 

  14. Bonsignore, M., Manta, D.S., Mirto, S., Quinci, E.M., Ape, F., and Montalto, V., Bioaccumulation of heavy metals in fish, crustaceans, molluscs and echinoderms from the Tuscany coast. Ecotoxic. Environ. Safety, 2018, no. 162, pp. 554–562.

  15. Cai, G., Guo, F., Liu, X. & Sui, Sh., Elemental and Sr-Nd isotopic compositions of Cenozoic sedimentary rocks from the Dongying Sag of Jiyang depression, North China: Implications for provenance evolution, Geochem. J., 2011, vol.45, pp. 33–55.

    Article  Google Scholar 

  16. Carlos, A.C., Marcelo, M., and Paulina, A., Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in southern extension of the Precordillera crustal fragment, Argentina, J. South Am. Earth Sci., 2003, no. 16, pp. 91–106.

  17. Condie, R.C. and Wronkiewicz, D.J., The Ce/Th ratio in Precambrian pelites from the Kaapvaal Craton as an indx of cratanic evolution, Earth Planet. Sci. Lett., 1990, no. 97, pp. 256–267.

  18. Crook, K.A.W., Lithogenesis and geotectonics: the significance of compositional cariations in flysch arenites (graywackes), in Modern and Ancient Geosynclinal Sedimentation, Dott, R.H. and Shaver, R.H., Eds., Soc. Sediment. Geol. Spec. Publ., 1974, no. 19, pp. 304–310.

  19. Cuculic, V., Cukrov, N., Kwokal, Z., Strmecki, S., and Plavsic, M., Assessing trace metal contamination and organic matter in the brackish lakes as the major source of potable water, Environ. Geochem. Health, 2018, no. 40(1), pp. 489–503.

  20. Cullers, R.L., The geochemistry of shales, siltstones and sandstones of Pennsylvania-Permian age, Colorado, USA: implications for provenance and metamorphic studies, Lithos, 2000, no. 51, pp. 181–203.

  21. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, no. 191 (4), pp. 305–327.

  22. Das, B.K., AL-Mikhlafi, A.S., and Kaur, P., Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting, J. Asian Earth Sci., 2006, no. 26, pp. 649–668.

  23. Ding H., Liu C-Q., Zhao Z-Q., Li S-L., Lang Y-C., Li X-D., Hu J., and Liu B-J., Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: chemical weathering and controlling factors, J Asian Earth Sci., 2016, 138, pp. 657–671.

    Article  Google Scholar 

  24. Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., and Xu, H., Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms, Science Total Environ., 2018, no. 625, pp. 872–884.

  25. Egger, M., Iron oxide reduction in methane-rich deep Baltic Sea sediments, Geochim. Cosmochim. Acta, 2017, no. 207, pp. 256–276.

  26. Egger, M., Riedinger, N., Mogollon, JM., and Jorgensen, BB., Global diffusive fluxes of methane in marine sediments, Nat Geosci., 2018, no. 11, pp. 421–425.

  27. Etemad, S, N., Barzi, H., Armstrong-Altrin, J. S., Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran, J. Afr.Earth Sci., 2011, vol.61, pp.142–159.

    Article  Google Scholar 

  28. Ettwig, K. F., Archaea catalyze iron-dependent anaerobic oxidation of methane, Proc. Natl. Acad. Sci. USA, 2016, no. 113, pp. 12792–12796.

  29. Eynatten, H., Petrography and chemistry of sandstone from the Swiss Molasse Basin: An archive of the Oligocene to Miocene evolution of the Central Alps, Sedimentology, 2003, no. 50, pp.703–724.

  30. Fedo, C. M., Nesbitt, H. W., Young, G. M., Unraveling the effects of K-metasomatic in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 1995, no. 23, pp. 921–924.

  31. Feng, J., Yang, S, Liang, J., Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea, J. Asian Earth Sci., 2018, vol. 168, pp. 77–86.

    Article  Google Scholar 

  32. Filella, M., Reimann, C., Biver, M., Rodushkin, I., and Rodushkina, K., Tellurium in the environment: current knowledge and identification of gaps, Environ. Chem., 2019, no. 16, pp. 215–228.

  33. Floyd, P.A. and Leveridge, B.E., Tectonic environment of the Devonian Gramscatho basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones, J. Geol. Soc. London, 1987, no. 144, pp. 531–542.

  34. Frantisek, K., Regulations for calcium, magnesium or hardness in drinking water in the European Union member states, Regul. Toxicol. Pharmacol., 2020, vol. 112.

  35. Fyhn, M. B. W., Thomsen, T. B., Keulen, N., Knudsen, C., Rizzi, M., Bojesen-Koefoed, J., Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin – implications for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins. Mar. Petrol. Geol., 2019, no. 101, pp. 162–179.

  36. Gao, Y., Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes, Sci. Rep., 2017, vol. 7, no. 5099.

  37. Gil-Diaz, T., Schäfer, J., Dutruch, L., Bossy, C., Pougnet, F., Abdou, M., Tellurium behaviour in a major European fluvial-estuarine system (Gironde, France): fluxes, solid/liquid partitioning and bioaccumulation in wild oysters, Environ. Chem., 2019, no. 16, pp. 229–242. https://doi.org/10.1071/EN18226

  38. Goddard, A. L. S., Fosdick, J. C., Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern Patagonia, Geology, 2019, no. 47, pp. 555–558.

  39. Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., Qi, L., Provenance and tectonic setting of the Proterozoic turbidities in Hunan, south China: Geochemical evidence, J. Sediment. Res., 2002, no. 72, pp. 393–407.

  40. Hayes, N.R., Buss, H.L., Moore, J.W., Krám, P., Pancost, D., Controls on granitic weathering fronts in contrasting climates, Chem. Geol., 2020, vol. 535, pp. 130–132.

  41. Hessler, A. M. and Lower, D. M., Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, south Africa, Precambr. Res., 2006, no. 151, pp. 185–210.

  42. Ho, T.P., Kenji, O., Md., A. U., Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, solute-discharge relationships, and reservoir impact, Acta Geochimica, 2019, vol. 38, pp. 627–641.

    Article  Google Scholar 

  43. Hu, Y., Luo, M., Chen, L., et al., Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints, J. Asian Earth Sci., 2018, vol. 168, pp. 87–95.

    Article  Google Scholar 

  44. Huang, F., Xu, Y., Tan, Z., Wu, Z., Xu, H., Shen, L., Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China, Environ. Sci. Poll. Res., 2018, no. 25(4), pp. 3647–3656.

  45. Kalmychkov, G.V., Pokrovsky, B.G., Hachikubo, A., and Khlystov, O.M., Geochemical characteristics of methane from sediments of the underwater high Posolskaya Bank (Lake Baikal). Lith. Miner. Resour., 2017, no. 2, pp. 102–110.

  46. Khabuev, A.V., Chensky, D.A., Solovieva, M.A., Belousov, O.V., Kononov, E.E., and Khlystov, O.M., Gas hydrate resources estimation by geophysical methods in “Krasny Yar” underwater gas seep of Lake Baikal, in Proc. Siber. Depart., Section Earth Sci., Russ. Acad. Natur. Sci. Geology. Explor Dev. Miner. Dep., 2016, no. 54, pp. 67–74.

  47. Khanehbad, M., Moussavi_Harami, R., Mahboubi, A. and Nadjafi, A., Geochemistry of carboniferous shales of the Sardar Formation, East Central Iran: Implication for provenance, paleoclimate and paleo-oxygenation conditions at a passive continental margin. Geochem. Int., 2012, no. 50, pp. 777–790.

  48. Komada, T., Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim. Cosmochim. Acta, 2016, no. 176, pp. 259–278.

  49. Lee, Y. I., Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea, Sediment. Geol., 2002, no. 149, pp. 219– 235.

  50. Liang, Q., Hu, Y., and Feng, D., Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics, Deep Sea Res. Part I: Oceanogr. Res. Pap., 2017, vol. 124, pp. 31–41.

    Article  Google Scholar 

  51. im, C. H., Kim, S.H., Chun, J.A., Kafatos, M.C., Lee, W.K., Assessment of agricultural drought considering the hydrological cycle and crop phenology in the Korean Peninsula, Water, 2019, no. 11, 1105

  52. Liu, J., Wang, W., Yang, H., Wu, Z., Hu, M.Y., Zhao, J., Bi, W., Alp, E.E., Dauphas, N., Liang, W., Chen, B., and Lin, J.-F., Carbon isotopic signatures of super-deep diamonds mediated by iron redox chemistry, Geochem. Perspect. Lett., 2019, vol. 10. https://doi.org/10.7185/geochemlet.1915

  53. Liu, S.-W., Zhang, X.-F., Xu, Q. X., Liu, D. C., Yuan, J., and Wang, M. L., Variation and driving factors of water discharge and sediment load in different regions of the Jinsha River Basin in China in the past 50 years, Water, 2019, no. 11.

  54. Lomakina, A.V., Mamaeva, E.V., Galachyants, Y.P., Petrova, D.P., Pogodaeva, T.V., Shubenkova, O.V., Khabuev, A.V., Morozov, I.V., and Zemskaya, T.I., Diversity of archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal. Geomicrobiol J., 2018, no. 35, pp. 50–63.

  55. Mahesh, K.T. and Govil, K., Regolith mapping and geochemistry of hydrothermally altered, weathered and clay minerals, Western Jahajpur belt, Bhilwara, India, 2020.

    Google Scholar 

  56. Makarov, M.M., Muyakshin, S.I., Kocher, K.M., Aslamov, I.A., Gnatovsky, R.Y., and Granin, N.G., Bubble gas escapes from the bottom of Lake Baikal, dependence of gas flare height on methane flux, Fundament. Prikladn. Gidrofiz., 2016, 9:32–41.

    Google Scholar 

  57. Martins, L., Pereira, A., Oliveira, A., Fernandes, A., Sanches Fernandes, L.F., and Pacheco, F.A.L., An assessment of groundwater contamination risk with radon based on clustering and structural models. Water, 2019, no. 11, 1107.

  58. Matta, G., Laura, G., Kumar, A., and Machel, J., Hydrochemical characteristics and planktonic composition assessment of River Henwal in Himalayan region of Uttarakhand using CPI, Simpson’s and Shannon-Weaver Index, J. Chem. Pharmaceut. Sci., 2018, no. 11(1).

  59. McGlynn, S. E., Chadwick, G. L., Kempes, C. P., and Orphan, V. J., Single cell activity reveals direct electron transfer in methanotrophic consortia, Nature, 2015, no. 526, pp. 531–535.

  60. McLennan, S.M., Weathering and global denudation, J. Geol., 1993, no. 101(2), pp. 295–303.

  61. Nagarajan, R., Armstrong-Altrin, J. S., Kessler, F. L., and Jong, J., Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, northwest Borneo, in: Sediment Provenance: Influence on Compositional Change from Source to Sink, Mazumder, R., Ed., Elsevier, 2017, pp. 123–153.

    Google Scholar 

  62. Nauditt, A. and Ribbe, L., Land use and climate change interactions in central Vietnam, in Water Resources and Development, Springer, 2017. https://doi.org/10.1007/978-981-10-2624-9

  63. Nesbitt, H. W. and Young, G. M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, no. 299, pp. 715–717.

  64. Obeid, M.A., Khalil, A.E.S., and Azer, M.K., Mineralogy, geochemistry and geotectonic significance of the Neoproterozoic ophiolite of Wadi Arais area, south Eastern Desert, Egypt, Int. Geol. Rev., 2016, vol. 58, pp. 687–702.

    Article  Google Scholar 

  65. Paikaray, S., Banerjee, S., and Mukherji, S., Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. J. Asian Earth Sci., 2008, no. 32, pp. 34–48.

  66. Pettijohn, F. J., Potter, P. E., and Siever, R., Sand and Sandstones, New York: Springer, 1987.

    Book  Google Scholar 

  67. Pogodaeva, T.V., Lopatina, I.N., Khlystov, O.M., Egorov, A.V., and Zemskaya, T.I., Background composition of pore waters in Lake Baikal bottom sediments. J. Great Lakes Res., 2017, no. 43, pp.1030–1043.

  68. Potter, P.E., Petrology and chemistry of modern big river sands, Geology, 1978, no. 86, pp. 423–449.

  69. Pourmorad, S., Survey geology with the help of LogPlot software, Tehran: Daneshyaran Publ., 2017.

    Google Scholar 

  70. Pourmorad, S., Exploration of Sedimentary Mineral Resources, Tehran: Daneshyaran Publ., 2018.

    Google Scholar 

  71. Rashid, S. A., Chakrata Formation, Lesser Himalaya: implications for crustal evolution and weathering history in the Himalaya. J. Asian Earth Sci., 2002, no. 21, pp. 283–293.

  72. Rollinson, H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation, New York: Longman Sci. Techn., 1993.

    Google Scholar 

  73. Roser, B. P., Cooper, R. A., Nathan, S., and Tulloch, A. J., Reconnaisance sandstone geochemistry, provenance and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand, New Zeal. J. Geol. Geophys., 1996, no. 39, pp. 1–16.

  74. Roy, R., Majumder, M, A quick prediction of hardness from water quality parameters by artificial neural network, Int. J. Environ. Sustain. Develop., 2018, no.17(2/3), pp. 247–257.

  75. Rustioni, G., Audetat, H., Keppler., Experimental evidence for fluid-induced melting in subduction zones, Geochem. Perspect. Lett., 2019, vol. 11. doi: https://doi.org/10.7185/geochemlet.1925

  76. Sahraeyan, M. and Bahrami, M., Geochemistry of sandstones from the Aghajari Formation, Folded Zagros Zone, southwestern Iran: Implication for paleoweathering condition, provenance, and rectonic setting, Int. J. Basic Appl. Sci., 2012, vol. 4, pp. 390–407.

    Google Scholar 

  77. Salehi, M. A., Moussavi-Harami, R., Mahboubi, A., Wilmsen, M., and Heubeck, Ch., Tectonic and palaeogeographic implications of compositional variations within the siliciclastic Ab-Haji Formation Lower Jurassic, east central Iran, Neues Jahrb. Geol. Paläontol. Abhandl., 2014, no. 271, pp. 21–48.

  78. Sapart, C. J., The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis, Biogeosciences, 2017, no. 14, pp. 2283–2292.

  79. Sickmann, Z. T., Schwartz, T. M., Malkowski, M. A., Dobbs, S. C., Graham, S. A., Interpreting large detrital geochronology data sets in retroarc foreland basins: an example from the Magallanes-Austral Basin, southernmost Patagonia, Lithosphere, 2019, vol. 2, no. 11, pp. 620–642.

    Article  Google Scholar 

  80. Spiridonov, E, M., Barium minerals barite and chlorinedominant ferrokinoshitalite BaFe2+3[Cl2/Al2Si2O10] BaFe32+[Cl2/Al2Si2O10] in plagioperidotites of the Yoko-Dovyren intrusion, northern Baikal area: Products of epigenetic low-grade metamorphism, Geochem. Int., 2019, vol. 57, no. 11, pp 1221–1229.

    Article  Google Scholar 

  81. Suttner, L.J. and Dutta, P.K., Alluvial sandstone composition and palaeoclimate framework mineralogy, J. Sediment. Petrol., 1986, no. 56, pp. 329–345.

  82. Taylor, S.R. and McLennan, S.H., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  83. Torres, M.A., West, A.J., and Clark, K.E., Geomorphic regime modulates hydrologic control of chemical weathering in the Andes-Amazon, Geochim Cosmochim Acta, 2015, no. 166, pp. 105–128.

  84. Van Loon, A. J. and Pisarska-Jamrozy, M., Changes in the heavy-mineral spectra on their way from various sources to joint sinks: a case study of Pleistocene sandurs and an ice-marginal valley in northwest Poland, in: Mazumder, Sediment Provenance: Influence on Compositional Change from Source to Sink, Elsevier, 2017, pp. 49–62.

    Google Scholar 

  85. Wang, X., Li, N., Feng, D., et al., Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea, J. Asian Earth Sci., 2018, vol. 168, pp. 137–144.

    Article  Google Scholar 

  86. Wanas, H. A. and Abdel-Maguid, N. M., Petrography and geochemistry of the Cambro Ordovician Wajid Sandstone, southwest Saudi Arabia: Implications for provenance and tectonic setting, J. Asian Earth Sci., 2006, no. 27, pp. 416–429.

  87. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E., and Boetius, A., Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria, Nature, 2015, vol. 526, pp. 587–590.

    Article  Google Scholar 

  88. Zhiwei Liao, Wenxuan Hu, Jian Cao, Xiaolin Wang, and Xiugen Fu, Oceanic anoxia through the late Permian Changhsingian Stage in the Lower Yangtze region, South China: Evidence from sulfur isotopes and trace elements, Chem. Geol., 2020, vol. 532, pp. 265–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Pourmorad.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeid Pourmorad, Harami, R.M., Solgi, A. et al. Sedimentological, Geochemical and Hydrogeochemical Studies of Alluvial Fans for Mineral and Environmental Purposes (Case Study of Southwestern Iran). Lithol Miner Resour 56, 89–112 (2021). https://doi.org/10.1134/S0024490221010077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490221010077

Keywords:

Navigation