Skip to main content
Log in

Numerical Simulation of Two-Phase Flow in a Centrifugal Separator

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The numerical results of mathematical modeling of a two-phase, axisymmetric swirling turbulent flow in the separation zone of a centrifugal separator are presented. Calculations were carried out for various turbulence models: Spalart–Allmaras rotation/curvature correction (SARC) and shear stress transport rotation/curvature correction (SST-RC) linear models, SSG/LRR-RSM-w2012 Reynolds stress nonlinear model, and the new two-fluid model. In the numerical solution the longitudinal-transverse implicit scheme is used where the pressure is coupled with flow velocity fields using the SIMPLEC procedure. The results from comparing numerical calculations against each other and against experimental data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Shvab, A.V. and Brendakov, V.N., Mathematical modeling of turbulent flow in a centrifugal apparatus, Izv. Tomsk. Politekh. Univ., 2005, vol. 308, no. 3, pp. 109–112.

    Google Scholar 

  2. Versteegh, T.A. and Nieuwstadt, T.M., Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel, Int. J. Heat Fluid Flow, 1997, vol. 19, p. 135.

    Article  Google Scholar 

  3. Boudjemadi, R., Maupu, V., Laurence, D., and Le Quere, P., Direct numerical simulation of natural convection in a vertical channel: a tool for second-moment closure modelling, in Engineering Turbulence Modelling and Experiments 3, Amsterdam: Elsevier, 1996, p. 39.

    Google Scholar 

  4. Peng, S.H. and Davidson, L., Large eddy simulation of turbulent buoyant flow in a confined cavity, Int. J. Heat Fluid Flow, 2001, vol. 22, p. 323.

    Article  Google Scholar 

  5. Cabot, W. and Moin, P., Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow, Flow, Turbul. Combust., 1999, vol. 63, p. 269.

    Article  Google Scholar 

  6. Spalart, P.R. and Shur, M.L., On the sensitization of turbulence models to rotational and curvature, Aerosp. Sci. Technol., 1997, vol. 1, no. 5, pp. 297–302.

    Article  Google Scholar 

  7. Smirnov, P. and Menter, F., Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, Proc. ASME Turbo Expo 2008: Power for Land, Sea and Air, GT 2008, Berlin, June 9–13, 2008.

  8. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flow, Proc. 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper, Reno, NV, 1992, vol. 12, no. 1, pp. 439–478.

  9. Menter, F.R., Zonal two-equation k-ω turbulence models for aerodynamic flows, Proc. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, 1993, AIAA Paper 1993–2906.

  10. Sentyabov, A.V., Gavrilov, A.A., and Dekterev, A.A., Investigation of turbulence models for computation of swirling flows, Thermophys. Aeromech., 2011, vol. 18, no. 1, pp. 73–85.

    Article  Google Scholar 

  11. Spalding, D.B., Chemical reaction in turbulent fluids, J. Phys.-Chem. Hydrodyn., 1983, vol. 4, pp. 323–336.

    Google Scholar 

  12. Spalding, D.B., A turbulence model for buoyant and combusting flows, Proc. 4th Int. Conference on Numerical Methods in Thermal Problems, Swansea, July 15–18, 1984; Imperial College Report CFD/86/4, 1984.

  13. Malikov, Z., Mathematical model of turbulence based on the dynamics of two fluids, Appl. Math. Modell., 2020, vol. 82, pp. 409–436.

    Article  MathSciNet  Google Scholar 

  14. Nigmatulin, R.I., Dynamics of Multiphase Media, New York: Hemisphere Publ., 1991, vol. 1, pp. 30–34.

    Google Scholar 

  15. Saffman, P.G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 1965, vol. 22, pp. 385–400.

    Article  ADS  Google Scholar 

  16. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publ., 1980.

    MATH  Google Scholar 

  17. Peacemen, D.W. and Rachford, H.H., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 1955, vol. 3, pp. 28–41.

    Article  MathSciNet  Google Scholar 

  18. Vasilevskii, M.V. and Zykov, E.G., Raschet effektivnosti ochistki gaza v inertsionnykh apparatakh (Calculation of the Efficiency of Gas Purification in Inertial Apparatus), Tomsk: Tomsk Polytechnic Univ., 2005.

  19. Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 1. Aerodynamics and diffusion coefficient of particles in cyclone chamber, Thermophys. Aeromech., 2003, vol. 10, no. 2, pp. 149–162.

    Google Scholar 

  20. Shilyaev, M.I. and Shilyaev, A.M., Modelling of dust separation process in a parallel flow cyclone. 2. Computation of fractional overtravel coefficient, Thermophys. Aeromech., 2003, vol. 10, no. 3, pp. 417–428.

    Google Scholar 

  21. Baranov, D.A., Kutepov, A.M., and Lagutkin, M.G., Calculation of the separation process in hydrocyclones, Theor. Found. Chem. Eng., 1996, vol. 30, no. 2, pp. 103–107.

    Google Scholar 

  22. Akhmetov, T.G., Porfil’eva, R.T., and Gaisin, L.G., Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Substances), Moscow: Vysshaya Shkola, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. M. Malikov or M. E. Madaliev.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, Z.M., Madaliev, M.E. Numerical Simulation of Two-Phase Flow in a Centrifugal Separator. Fluid Dyn 55, 1012–1028 (2020). https://doi.org/10.1134/S0015462820080066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820080066

Keywords:

Navigation