Skip to main content

Advertisement

Log in

Giant subaqueous carbonate dunes: a revised interpretation of large-scale oo-bioclastic clinoforms in the middle Jurassic of the Paris Basin and its implications

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Recent developments of carbon capture and storage and geothermal subsurface prospects in the Middle Jurassic limestone of the central part of the Paris Basin have rejuvenated interest in the world class outcrops of the Bathonian Oolithe Blanche Formation on the southeastern edge of the Basin. Here, ooid-bioclast grainstones occur as large-scale (10–15 m high) clinoforms in the upper part of the Oolithe Blanche, which remain enigmatic and variously interpreted. High-resolution sequence stratigraphic correlations, constrained by biostratigraphic markers and integrated with regional palaeogeography, indicate that the clinoforms are giant dunes developed during the early part of the regressive phase of a third-order transgressive–regressive sequence (Bt3), in the northern part of the Burgundy Bathonian carbonate ramp. Carbonate sand bodies up to 15 m high with intervening troughs, formed subaqueous giant dune field(s) with calculated wavelengths of about 500–800 m. Using dune height as a proxy for calculating the palaeobathymetry of deposition, it is concluded that the dunes formed under a minimum water depth of about 60 m. A detailed facies analysis of the sediments underlying the dunes, which include beds rich in brachiopods in living position corresponding to the MFS of the third-order transgressive–regressive sequence (Bt3), supports such a water depth. The constitutive facies of the dunes themselves also reflect a significant water depth, despite the presence of ooids that are definitely transported away from their main production zone. This new interpretation of the large-scale clinoforms in the upper Oolithe Blanche and the associated revised palaeobathymetry have implications for the interpretations of Bathonian carbonates across the Paris Basin, which are relevant to ongoing projects of reservoir characterization of subsurface prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allen JRL (1980) Sand waves; a model of origin and internal structure. Sediment Geol 26:281–328

    Google Scholar 

  • Anastas A, Dalrymple RW, James NP, Nelson CS (2006) Lithofacies and dynamics of a cool-water carbonate seaway; mid-Tertiary, Te Kuiti Group, New Zealand. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls, vol 255. Geological Society of London Spec Publ, pp 245–268

  • Anastas A, Dalrymple RW, James NP, Nelson CS (2008) Cross-stratified calcarenites from New-Zealand: subaqueous dunes in a cool-water, Oligo-Miocene seaway. Sedimentology 44:869–891

    Google Scholar 

  • Andrieu S, Brigaud B, Barbarand J, Lasseur E, Saucède T (2016) Disentangling the control of tectonics, eustasy, trophic conditions, and climate on shallow-marine carbonate production during the Aalenian–Oxfordian interval: from the Western France platform to the Western Tethyan domain. Sed Geol 345:54–84

    Google Scholar 

  • Andrieu S, Brigaud B, Barbarand J, Lasseur E (2017) Linking early diagenesis and sedimentary facies to sequence stratigraphy on a prograding oolitic wedge: the Bathonian of western France (Aquitaine Basin). Mar Pet Geol 81:169–195

    Google Scholar 

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60(1):160–172

    Google Scholar 

  • Bastos AC, Collins M, Kenyon NH (2003) Morphology and internal structure of sand shoals and sandbanks off the Dorset coast, English Channel. Sedimentology 50:1105–1122

    Google Scholar 

  • Bathurst RCG (1975) Carbonate sediments and their diagenesis. Developments in sedimentology 12. Elsevier, Amsterdam, p 658

    Google Scholar 

  • Berne S, Castaing P, Le Drezen E, Lericolais G (1993) Morphology, internal structure, and reversal of asymmetry of large subtidal dunes in the entrance of the Gironde estuary. J Sediment Res 63(5):780–793

    Google Scholar 

  • Bernier P (1984) Les formations carbonates du Kimméridgien et du Portlandien dans le Jura méridional; Stratigraphie, micropaléontologie, sédimentologie. Doc du Lab de Géol de Lyon 92(2):803p

    Google Scholar 

  • Bernier P, Fleury JJ (1980) La plate-forme carbonatée du Gavrovo-Tripolitza (Grèce): évolution des conditions de sédimentation au cours du Mésozoïque. Géol Méditerr VII 3:247–259

    Google Scholar 

  • Bochum Geol U Geotechn Arb. 29:44–47.

  • Brigaud B, Durlet C, Deconinck JF, Vincent B, Pucéat E, Thierry J, Trouiller A (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sediment Geol 222:181–206

    Google Scholar 

  • Brosse E, Badinier G, Blanchard F, Caspard E, Collin PY et al (2010) Selection and characterization of geological sites able to host a pilot-scale CO2 storage in the Paris Basin (PICOREF). Oil Gas Sci Technol 65(3):375–403

    Google Scholar 

  • Burchette T, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Google Scholar 

  • Burchette T, Wright VP, Faulkner TJ (1990) Oolitic sandbody depositional models and geometries, Mississippian of Southwest Britain: implications for petroleum exploration in carbonate ramp settings. Sediment Geol 68(1):87–115

    Google Scholar 

  • Casteleyn L, Robion P, Collin PY, Menéndez B, David C, Desaubliaux G, Fernandes N, Dreux R, Badiner G, Brosse E, Rigollet C (2010) Interrelations of the petrophysical, sedimentological and microstructural properties of the Oolithe Blanche Formation (Bathonian, saline aquifer of the Paris Basin). Sediment Geol. https://doi.org/10.1016/j.sedgeo.2010.07.003

    Article  Google Scholar 

  • Casteleyn L, Robion P, David C, Collin PY, Menéndez B, Fernandes N, Desaubliaux G, Rigollet C (2011) An integrated study of the petrophysical properties of carbonate rocks from the “Oolithe Blanche” formation in the Paris Basin. Tectonophysics 503:18–33

    Google Scholar 

  • Catuneanu O, Galloway WE, Kendall GSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44(3):173–245

    Google Scholar 

  • Dalrymple RW (2010) Tidal depositional systems. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St John’s, pp 201–231

    Google Scholar 

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and bars. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Developments in sedimentology 53. Elsevier, Amsterdam, pp 359–420

    Google Scholar 

  • Delance JH (1964) Meyendorfina et Orbitamina dans le Calcaire de Comblanchien, au Sud-Ouest de Dijon. Revue de Micropaléontologie n°3.

  • Delmas J, Brosse E, Houel P (2010) Petrophysical properties of the Middle Jurassic carbonates in the PICOREF sector (South Champagne, Paris Basin, France). Oil Gas Sci Technol 65(3):405–434

    Google Scholar 

  • Dera G, Brigaud B, Monna F, Laffont R, Pucéat E, Deconinck JF, Pellenard P, Joachimsky M, Durlet C (2011) Climatic ups and downs in a disturbed Jurassic world. Geology 39(3):215–218

    Google Scholar 

  • Diaz MR, Eberli GP (2019) Decoding the mechanisms of formation in marine ooids: a review. Earth Sci Rev 190:536–556

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks. Am Assoc Petrol Geol Mem, Tulsa, pp 108–121

    Google Scholar 

  • Durlet C, Thierry J (2000) Modalités séquentielles de la transgression aalénobajocienne sur le sud-est du Bassin parisien. Bull Soc Géol France 171:327–339

    Google Scholar 

  • Embry AF, Johanessen EP (1992) T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic–Lower Jurassic succession, western Sverdrup basin, Arctic Canada. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential, n°2. Norwegian Petroleum Society (NPF) Spec Publ, pp 121–146

  • Enay R, Mangold C (1980) Synthèse paléogéographique du Jurassique français. Document du Laboratoire de Géologie de Lyon 5 (Groupe Français d'Etude du Jurassique), pp 220

  • Fenster MS, Fitzgerald DM, Bohlen WF, Lewis RS, Baldwin T (1990) Stability of giant sand waves in Eastern Long Island sound, USA. Mar Geol 91:207–225

    Google Scholar 

  • Flemming BW (1988a) Pseudo-tidal sedimentation in a non-tidal shelf environment; Southeast African continental margin. In: De Boer PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel Publishing, Dordrecht

    Google Scholar 

  • Flemming BW (1988b) Zur klassifikation subaquatischer, stromungstransversaler Transportkorper. Bochumer Geologische und Geotechnische Arbaiten 29:44–47

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Analysis, interpretation and application. Springer, Berlin, p 976

    Google Scholar 

  • Franzetti M, Le Roy P, Delacourt C, Garlan T, Cancouert R, Sukhovich A, Deschamps A (2013) Giant dune morphologies and dynamics in a deep continental shelf environment: example of the banc du four (Western Brittany, France). Mar Geol 346:17–30

    Google Scholar 

  • Garcia JP (1993) Les variations du niveau marin sur le bassin de Paris au Bathonian-Callovien—Impact sur les communautés benthiques et sur l’évolution des ornithellidés (Terebratellidina). Mémoires Géologiques de l’Université de Dijon 17:307

    Google Scholar 

  • Garcia JP, Dromart G (1997) The validity of two biostratigraphic approach in sequence stratigraphic correlations: brachiopod zones and marker-beds in the Jurassic. Sedimen Geol 114:55–79

    Google Scholar 

  • Gaumet F (1997) Fondements géologiques pour la modélisation stratigraphique des systèmes carbonatés. Le Jurassique moyen de l'Angleterre à la Méditerranée. PhD thesis, Université Claude Bernard—Lyon I, p 296

  • Gaumet F, Garcia JP, Dromart G, Sambet G (1996) Stratigraphic control upon depositional facies, geometries and profiles across the Bathonian-Callovian carbonate platform in Burgundy. Bull Soc Géol France 167:409–421

    Google Scholar 

  • Gaumet F, Garcia JP, Dromart G, Allemand P (2001) Middle Jurassic production rates and “patchy” architectures of the carbonate systems along the north-western Tethyan margin (Paris Basin to Sub-alpine Basin). Géol Méditerr XXVIII 1–2:79–83

    Google Scholar 

  • Gonzalez R (1996) Response of shallow-marine carbonate facies to third-order and high frequency sea-level fluctuations; Hauptrogenstein Formation, northern Switzerland. Sedim Geol 102:111–130

    Google Scholar 

  • Gradstein FM, Ogg JG, SmithZ MD, OGG GM, (2012) The geological time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  • Haq BU (2017) Jurassic sea-level variations: a reappraisal. GSA Today. https://doi.org/10.1130/GSATG359A.1

    Article  Google Scholar 

  • Harris PM (2009) Heterogeneity within carbonate reservoirs—guidelines from modern analogs. Search and Discovery #60039, Short course at the University of California Davis

  • Homewood PW, Mauriaud P, Lafont F (1999) Best practices in sequence stratigraphy. Bull Centre Rech Elf Explor Prod Mem 25:81

    Google Scholar 

  • Jacquin T, Garcia JP, Ponsot C, Thierry J, Vail PR (1992) Séquence de dépôt et cycles régressif/transgressifs en domaine marin carbonaté: exemple du Dogger du Bassin de Paris. Comptes Rendus de l’Académie des Sci Série II Fascicule a-Sci de la Terre et des Planètes 315:353–362

    Google Scholar 

  • Jacquin T, Dardeau G, Durlet C, de Graciansky PC, Hantzpergue P (1998) The North Sea cycle: an overview of 2nd-order transgressive/regressive facies cycles in Western Europe. In de Graciansky PC, Hardenbol J, Jacquin T, Vail PR (eds) Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, vol 60. SEPM Spec Publ, pp 445–466

  • James NP (1997) The cool-water carbonate depositional realm. In James NP and Clarke AD (eds) Cool-water carbonates, vol 56. SEPM Spec Publ, pp 1–20

  • Javaux C (1992) La plate-forme parisienne et bourguignonne au Bathonien terminal et au Callovien—Dynamique sédimentaire, séquentielle et diagénétique, Place et création des réservoirs potentiels. Mémoires géologiques de l'Université de Dijon, vol 16, p 342

  • Jorry S, Bièvre G (2011) Integration of sedimentology and ground-penetrating radar for high-resolution imaging of a carbonate platform. Sedimentology 58(6):1370–1390

    Google Scholar 

  • Kowalewski M, Simoes MG, Carroll M, Rodland DL (2002) Abundant brachiopods on a tropical upwelling-influenced shelf (Southeast Brazilian Bight, South Atlantic). Palaios 17:277–286

    Google Scholar 

  • Lindholm RC, Finkelman RB (1972) Calcite staining: semiquantitative determination of ferrous iron. J Sedim Petrol 42:239–242

    Google Scholar 

  • Loreau JP (1973) Nouvelles observations sur la genèse et la signification des oolithes. Sci Terre 18:213–244

    Google Scholar 

  • Loreau JP, Purser BH (1973) Distribution and ultrastructure of Holocene ooids in the Persian Gulf. In: Purser BH (ed) The Persian gulf. Springer, New York, pp 279–328

    Google Scholar 

  • Makhloufi Y (2013) Impact de la sédimentologie et de la diagenèse sur les propriétés pétrophysiques d’un réservoir carbonaté oolithique—le cas de la Formation de l’Oolithe Blanche (Bathonien, Bassin de Paris). PhD Thesis, Université Pierre et Marie Curie, p 178

  • Makhloufi M, Collin PY, Bergerat F, Casteleyn L, Claes S, David C, Menendez B, Monna F, Robion P, Sizun JP, Swennen R, Rigollet C (2013) Impact of sedimentology and diagenesis on the petrophysical properties of a tight oolitic carbonate reservoir. The case of the Oolithe Blanche Formation (Bathonian, Paris Basin, France). Mar Petrol Geol 48:323–340

    Google Scholar 

  • Malikides M, Harris P, Jenkins CJ, Keene JB (1988) Carbonates sandwaves in Bass Strait. Aust J Earth Sci 35:303–311

    Google Scholar 

  • Miall AD (1997) The geology of stratigraphic sequences. Springer, Berlin

    Google Scholar 

  • Monty CLV (1981) Spongiostromate vs. porostromate stromatolites and oncolites. In: Monty CLV (ed) Phanerozoic stromatolites. Springer, Berlin, pp 1–4

    Google Scholar 

  • Morsilli M, Pomar L (2012) Internal waves vs. surface storm waves: a review on the origin of hummocky cross-stratification. Terra Nova 24:273–282

    Google Scholar 

  • Neumeier U (1998) Tidal dunes and sand waves in deep outer shelf environments, Bajocian, SE Jura. France J Sedim Res 68(3):507–514

    Google Scholar 

  • Palermo D, Aigner T, Seyfang B, Nardon S (2012) Reservoir properties and petrophysical modelling of carbonate sand bodies: outcrop analogue study in an epicontinental basin (Triassic, Germany). In: Garland J, Neilson JE, Laubach SE, Whidden KJ (eds) Advances in carbonate exploration and reservoir analysis. Geological Society of London Spec Publ 370. doi: https://doi.org/10.1144/SP370.6.

  • Patruno S, Helland-Hansen W (2018) Clinoforms and clinoform systems: a review and dynamic classification scheme for shoreline subaqueous deltas, shelf edges, and continental margins. Earth Sci Rev 185:202–233

    Google Scholar 

  • Pierre A, Durlet C, Razin P, Chellai EH (2010) Spatial and temporal distribution of ooids along a Jurassic carbonate ramp Amellago outcrop transect, High-Atlas, Morocco. In: Van Buchem FSP, Gerdes KD, Esteban M (eds) Mesozoic and cenozoic carbonate systems of the mediterranean and the middle east stratigraphic and diagenetic reference models, vol 329. Geological Society of London Spec Publ, pp 65–88.

  • Pomar L, Morsilli M, Hallock P, Badenas B (2012) Internal waves, an under-explored source of turbulence events in the sedimentary record. Earth Sci Rev 111:56–81

    Google Scholar 

  • Pugh DT (1987) Tides, surges and mean sea-level. Wiley, Chichester, p 472p

    Google Scholar 

  • Purser BH (1972) Subdivision et interprétation des séquences carbonatées. Mem BRGM 77:679–698

    Google Scholar 

  • Purser BH (1975) Sédimentation et diagenèse précoce des séries carbonatées du Jurassique moyen de Bourgogne. Unpublished PhD Thesis, Orsay, p 450

  • Purser BH (1978) Early diagenesis and the preservation of porosity in Jurassic limestones. J Petrol Geol 1(2):83–94

    Google Scholar 

  • Purser BH (1989) Plates-formes carbonatées exemple du Jurassique moyen du Bassin de Paris, Dynamique et méthodes d'étude des bassins sédimentaires. Technip 145–164

  • Quiquerez A, Dromart G (2006) Environmental control on granular clinoforms or ancient carbonate shelves. Geol Mag 143(3):343–365

    Google Scholar 

  • Rankey EC, Reeder SL (2012) Tidal sands of the Bahamian archipelago. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Berlin, pp 537–565

    Google Scholar 

  • Rankey EC, Riegl BM, Steffen K (2006) Form, function, and feedbacks in a tidally dominated ooid shoal, Bahamas. Sedimentology 53:1191–2121

    Google Scholar 

  • Regnet JB, David C, Fortin J, Robion P, Makhloufi Y, Collin PY (2015) Influence of microporosity distribution on the mechanical behavior of oolithic carbonate rocks. Geomech Energy Environ 3:11–23

    Google Scholar 

  • Reineck HE, Singh IB (1980) Depositional sedimentary environments. Springer, Berlin, p 551

    Google Scholar 

  • Reynaud JY, Dalrymple RW (2012) Shallow-marine tidal deposits. In: Davis RA, Dalrymple RW (eds) Principles of tidal sedimentology. Springer, Berlin, pp 335–369

    Google Scholar 

  • Riegl B, Poiriez A, Janson X, Bergman KL (2010) The Gulf: facies belts, physical chemical and biological parameters of sedimentation on a carbonates ramp. In: Westphal H, Riegl B, Eberli G (eds) Carbonate depositional systems: assessing dimensions and controlling parameters. Springer, Berlin, p 235

    Google Scholar 

  • Strasser A (1991) Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin , pp 709–721

    Google Scholar 

  • Surlyk F, Noe-Nygaard N (1991) Sand bank and dune facies architecture of a wide intracratonic seaway; Late Jurassic-Early Cretaceous Raukelv Formation, Jameson Land, East Greenland. In: Miall AD, Tyler N (eds) The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. Concepts in Sediment Paleo 3:261–276.

  • Swift DJP, Niedoroda AW (1984) Fluid and sediment dynamics on continental shelves. In: Tillman RW, Swift DJ, Walker RG (eds) Shelf and sandstone reservoirs. SEPM Short Course 13:1–49.

  • Thierry J (2000) Late Sinemurian, middle Toarcian, middle Callovian, early Kimmeridgian, early Tithonian. In: Crasquin S (ed) Atlas Peri-Tethys, Palaeogeographical maps—Explanatory notes. CCGM/CGMW Edit, Paris, pp 49–110

    Google Scholar 

  • Thierry J, Cariou E, Dubois P, Fily G, Gabilly J, Laurin B, Le Roux J, Lorenz J, Rioult M, Yapaudjian L (1980) Jurassique Moyen. In: Mégnien C, Mégnien F (eds) Synthèse Géologique du Bassin de Paris. Stratigraphie et Paléogéographie 101(1) BRGM edition : 125–193.

  • Thiry-Bastien P, Thierry J, Debourse P, Vidier JP (2000) Geometry and deposit profiles of the Ardennes platform during Late Bathonian-Early Callovian: stratigraphic constraints during the drowning of a carbonate shelf. Géologie de la France 2:3–15

    Google Scholar 

  • Thomas H, Brigaud B, Blaise T, Saint-Bezar B, Zordan E, Zeyen H, Andrieu S, Vincent B, Chirol H, Portier E, Mouche E (2021) Contribution of drone photogrammetry to 3D outcrop modeling of facies, porosity, and permeability heterogeneities in carbonate reservoirs (Paris Basin, Middle Jurassic). Mar Petrol Geol 123:104772

    Google Scholar 

  • Todd B, Shaw J (2009) Application of seafloor mapping on the Canadian Atlantic Continental Shelf. Geosciences Canada 36(2):81–94

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate Sedimentology. Blackwell Science, Oxford, p 482

    Google Scholar 

  • Vail PR, Mitchum RM, Todd TP, Widmeri JW, Thompson S, Sangree JB, Bubb JN, Hatelid WG (1977) Seismic stratigraphy and global changes of sea level. In: Payton C (ed) Seismic Stratigraphy. Application to hydrocarbon exploration. Am Assoc Petrol Geol Mem 26:49–222.

  • Vail PR, Colin JP, Duchêne RJ, Kuchly J, Mediavilla F, Trifilieff V (1987) Sequence stratigraphy and its application to the chronostratigraphic correlation of the Paris Basin Jurassic. Bulletin de la Société Géologique de France 3:1301–1321

    Google Scholar 

  • Vail PR, Audemard F, Bowman SA, Eisnet SN, Perez-Cruz C (1991) Signatures of tectonics, eustasy and sedimentology – an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and Events in stratigraphy. Springer, Berlin-Heidelberg-New York, pp 617–659

    Google Scholar 

  • Wright VP (1984) Peritidal carbonate facies models: a review. Geol J 84(19–1):309–325

    Google Scholar 

  • Yose L A, Ruf A S, Strohmenger CJ, Schuelke JS, Gombos A, Al-Hosani i, Al-Maskary S, Bloch g, Al-Mehairi y, Johnson IG (2006) Three-dimensional characterization of a heterogeneous carbonate reservoir, Lower Cretaceous, Abu Dhabi (United Arab Emirates).In: Harris PM, Weber LJ (eds) Giant hydrocarbon reservoirs of the world: From rocks to reservoir characterization and modelling. Am Assoc Petrol Geol Mem 88/SEPM Spec Publ:173–212.

Download references

Acknowledgements

We thank ROCAMAT and POLYCOR France for the authorizations to access the quarries and the financial support provided for some aspects of this work. Additionally, we would like to thank Flavien Waucher and Philippe Blanc for the high quality thin sections. We are grateful to the associate Editor Maurice Tucker and to Stephan Jorry and Jean-Yves Reynaud, for their extremely helpful comments and detailed reviews that definitely improved the quality and the scope of the original manuscript. This work is dedicated to the memory of our inspiring professors and mentors, Jacques Thierry and Jean-Paul Loreau, who still continue to guide our geological lives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, B., Brigaud, B., Thomas, H. et al. Giant subaqueous carbonate dunes: a revised interpretation of large-scale oo-bioclastic clinoforms in the middle Jurassic of the Paris Basin and its implications. Facies 67, 12 (2021). https://doi.org/10.1007/s10347-021-00621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00621-4

Keywords

Navigation