Skip to main content
Log in

Linear Paul Trap for Quantum Logic Experiments

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The design of a linear ion Paul trap for quantum-logical operations on ultracold ions with high reliability is developed. The general requirements for the trap are presented, its parameters are optimized, and electric fields are numerically simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Barends et al., “Superconducting Quantum Circuits at the Surface Code Threshold for Fault Tolerance,” Nature 508, 500 (2014). https://doi.org/10.1038/nature13171

    Article  ADS  Google Scholar 

  2. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. Devoret, and R. J. Schoelkopf, “Extending the Lifetime of a Quantum Bit with Error Correction in Superconducting Circuits,” Nature 536, 441 (2016). https://doi.org/10.1038/nature18949

    Article  ADS  Google Scholar 

  3. H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal Photonic Quantum Computation via Time Delayed Feedback,” Proc. Natl. Acad. Sci. U. S. A. 114, 11362 (2017). https://doi.org/10.1073/pnas.1711003114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Y. Wang, A. Kumar, T. Y. Wu, and D. S. Weiss, “Single-Qubit Gates Based on Targeted Phase Shifts in 3D Neutral Atom Array,” Science 352, 1562 (2016). https://doi.org/10.1126/science.aaf2581

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, “Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms,” Phys. Rev. Lett. 123, 170503 (2019). https://doi.org/10.1103/PhysRevLett.123.170503

    Article  ADS  Google Scholar 

  6. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, “Demonstration of a Small Programmable Quantum Computer with Atomic Qubits,” Nature 536, 63 (2016). https://doi.org/10.1038/nature18648

    Article  ADS  Google Scholar 

  7. Y. Nam, et al., “Ground-State Energy Estimation of the Water Molecule on a Trapped-Ion Quantum Computer,” Quantum Inform. 6 (2020). https://doi.org/10.1038/s41534-020-0259-3

  8. A. V. Krasavin, V. G. Pal’chikov, S. V. Petropavlovskii, S. V. Pushkin, M. A. Troyan, and V. P. Yakovlev, “Ions in Trap: From Quantum Logic to Frequency Standard,” Yad. Fiz. Inzh. 3, 362 (2012).

    Google Scholar 

  9. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, H. N. Zhang, L. M. Duan, D. Yum, and K. Kim, “Single-Qubit Quantum Memory Exceeding Ten-Minute Coherence Time,” Nature Photonics 11, 646 (2017). https://doi.org/10.1038/s41566-017-0007-1

    Article  ADS  Google Scholar 

  10. J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, “High-Fidelity Universal Gate Set for Be9+ Ion Qubits,” Phys. Rev. Lett. 117, 1 (2016). https://doi.org/10.1103/PhysRevLett.117.060505

    Article  Google Scholar 

  11. V. M. Schäfer, C. J. Ballance, K. Thirumalai, L. J. Stephenson, T. G. Ballance, A. M. Steane, and D. M. Lucas, “Fast Quantum Logic Gates with Trapped-Ion Qubits,” Nature 555, 75 (2018). https://doi.org/10.1038/nature25737

    Article  ADS  Google Scholar 

  12. L. Akopyan, I. Zalivako, K. Lakhmanskii, K. Khabarova, and N. Kolachevskii, “Optimization of the Spectrum of Normal Frequencies of Linear Ionic Crystals in Paul Traps for EIT Cooling Using Optical Grating,” JETP Lett. 2020 (in press).

  13. I. A. Semerikov, K. Yu. Khabarova, I. V. Zalivako, A. S. Borisenko, and N. N. Kolachevskii, “Compact Transportable Optical Standard on Single Yb Ion (“YBIS” Project),” Bull. Lebedev Phys. Inst. 45, 337 (2018).

    Article  ADS  Google Scholar 

  14. G. Pagano, P. W. Hess, H. B. Kaplan, W. L. Tan, P. Richerme, P. Becker, A. Kyprianidis, J. Zhang, E. Birckelbaw, M. R. Hernandez, Y. Wu, and C. Monroe, “Cryogenic Trapped-Ion System for Large-Scale Quantum Simulation,” Quantum Sci. Technol. 4, 014004 (2019). https://doi.org/10.1088/2058-9565/aae0fe

    Article  ADS  Google Scholar 

  15. R. Dubessy, T. Coudreau, and L. Guidoni, “Electric Field Noise above Surfaces: In Model for Heating-Rate Scaling Law in Ion Traps,” Phys. Rev. A: Atomic, Molecular, and Optical Physics 80, 031402, (2009). https://doi.org/10.1103/PhysRevA.80.031402

  16. A. Borisenko, I. Zalivako, I. Semerikov, M. Aksenov, K. Khabarova, and N. Kolachevsky, “Motional States of Laser Cooled Yb Ions in an Optimized Radiofrequency Trap,” Laser Phys. 29, 095201, (2019). https://doi.org/10.1088/1555-6611/ab2b9e

    Article  ADS  Google Scholar 

  17. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright and C. Monroe, “Demonstration of a Small Programmable Quantum Computer with Atomic Qubits,” Nature 536, 63 (2016). https://doi.org/10.1038/nature18648

    Article  ADS  Google Scholar 

  18. P. B. R. Nisbet-Jones, S. A. King, J. M. Jones, R. M. Godun, C. F. Baynham, K. Bongs, M. Doležal, P. Balling, and P. Gill, “A Single-Ion Trap with Minimized an Ion-Environment Interactions,” Appl. Phys. B: Lasers and Optics 122, 1 (2016). https://doi.org/10.1007/s00340-016-6327-x

    Article  Google Scholar 

  19. D. T. C. Allcock, L. Guidoni, T. P. Harty, C. J. Ballance, M. G. Blain, A. M. Steane, and D. M. Lucas, “Reduction of Heating Rate in a Microfabricated Ion Trap by Pulsed-Laser Cleaning,” New J. Phys. 13, 123023 (2011). https://doi.org/10.1088/1367-2630/13/12/123023

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 19-12-00274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Semerikov.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerikov, I.A., Zalivako, I.V., Borisenko, A.S. et al. Linear Paul Trap for Quantum Logic Experiments. Bull. Lebedev Phys. Inst. 47, 385–389 (2020). https://doi.org/10.3103/S1068335620120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620120155

Keywords:

Navigation