Skip to main content
Log in

Decrease in the Mode Purity of Microwave Beams in the L-2M Stellarator Peripheral Plasma

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The linear coupling (transformation) of two wave modes in a peripheral layer of inhomogeneous plasma confined by a magnetic field is theoretically analyzed. This transformation is a cause of a decrease in the purity of the X-mode introduced into plasma, which is optimum for electron—cyclotron plasma heating at the second harmonic of gyrofrequency. It is shown that the mode purity defect in radiation power under L-2M stellarator conditions can be no more than 6%. An increase in the mode purity defect because of the arbitrarily large steepness of the electron density profile in the peripheral layer appears insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. Nagasaki, A. Ejiri, T. Mizuuchi, T. Obiki, H. Okada, F. Sano, H. Zushi, S. Besshou, and K. Kondo, “Effects of Magnetic Shear on Electron Cyclotron Resonance Heating in Heliotron/Torsatron Configuration,” Phys. Plasmas 6, 556 (1999). https://doi.org/10.1063/1.873200

    Article  ADS  Google Scholar 

  2. A. S. Sakharov and M. A. Tereshchenko, “Kinetic Simulations of EC Plasma Heating and Current Drive in the L-2M Stellarator,” Plasma Phys. Rep. 28, 539 (2002). https://doi.org/10.1134/1.1494051

    Article  ADS  Google Scholar 

  3. T. Ii Tsujimura, S. Kubo, H. Takahashi, R. Makino, R. Seki, Y. Yoshimura, H. Igami, T. Shimozuma, K. Ida, C. Suzuki, M. Emoto, M. Yokoyama, T. Kobayashi, C. Moon, K. Nagaoka, M. Osakabe, S. Kobayashi, S. Ito, Y. Mizuno, K. Okada, A. Ejiri, T. Mutoh, and the LHD Experiment Group, “Development and Application of a Ray-Tracing Code Integrating with 3D Equilibrium Mapping in LHD ECH Experiments,” Nucl. Fusion 55, 123019 (2015). https://doi.org/10.1088/0029-5515/55/12/123019

    Article  ADS  Google Scholar 

  4. I. Vakulchyk, P. Aleynikov, and N. B. Marushchenko, “The Wave-Mode Purity in ECRH: Advanced 3D Ray-Tracing Modeling for W7-X,” in Proceedings of the 43rd EPS Conference Plasma Physics, Leuven, Belgium, 2016, Vol. 40A (ECA), p. 4.021.

  5. S. E. Segre and V. Zanza, “Evolution of Polarization of an Electromagnetic Wave Propagating in Magnetized Plasma: Comparison between two Alternative Formalisms,” Phys. Plasmas 18, 092107 (2011). https://doi.org/10.1063/1.3631700

    Article  ADS  Google Scholar 

  6. V. V. Zheleznyakov, V. V. Kocharovskii, and Vl. V. Kocharovskii, “Linear Coupling of Electromagnetic Waves in Inhomogeneous Weakly-Ionized Media,” Sov. Phys. Usp. 26, 877 (1983). https://doi.org/10.1070/PU1983v026n10ABEH004518

    Article  ADS  Google Scholar 

  7. Yu. A. Kravtsov, O. N. Naida, and A. A. Fuki, “Waves in Weakly Anisotropic 3D Inhomogeneous Media: Quasi-Isotropic Approximation of Geometrical Optics,” Phys. Usp. 39, 129 (1996). https://doi.org/10.1070/PU1996v039n02ABEH000131

    Article  ADS  Google Scholar 

  8. M. A. Tereshchenko, “Microwave Beam Bifurcation in an Inhomogeneous Plasma: Modeling by Ray Methods,” Plasma Phys. Rep. 46, 740 (2020). https://doi.org/10.1134/S1063780X20070090

    Article  ADS  Google Scholar 

  9. M. Tereshchenko, F. Castejón, and A. Cappa, “TRUBA User Manual,” Informes Técnicos CIEMAT 2008, No. 1134 (EURATOM/CIEMAT, Madrid, 2008).

    Google Scholar 

  10. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, Oxford, 1970).

    Google Scholar 

  11. J. Kopp, “Efficient Numerical Diagonalization of Hermitian 3x3 Matrices,” Int. J. Mod. Phys. C 19, 523 (2008). https://doi.org/10.1142/S0129183108012303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. I. Meshcheryakov, G. M. Batanov, V. D. Borzosekov, S. E. Grebenshchikov, I. A. Grishina, N. K. Kharchev, Yu. V. Kholnov, L. V. Kolik, E. M. Konchekov, L. M. Kovrizhnykh, A. A. Letunov, V. P. Logvinenko, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, S. V. Shchepetov, N. N. Skvortsova, V. D. Stepakhin, M. A. Tereshchenko, I. Yu. Vafin, and D. G. Vasilkov, “Plasma Confinement during ECR Heating with a Volume Power Density of 3 MW/m3 at the L-2M Stellarator,” J. Phys.: Conf. Ser. 907, 012016 (2017). https://doi.org/10.1088/1742-6596/907/1/012016

    Article  Google Scholar 

  13. G. M. Batanov, V. D. Borzosekov, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, A. S. Sakharov, N. N. Skvortsova, V. D. Stepakhin, M. A. Tereshchenko, and N. K. Kharchev, “Displacement of the Electron Cyclotron Resonance Heating Region and Time Evolution of the Characteristics of Short-Wavelength Turbulence in the 3D Magnetic Configuration of the L-2M Stellarator,” Plasma Phys. Rep. 40, 769 (2014). https://doi.org/10.1134/S1063780X14100018

    Article  ADS  Google Scholar 

Download references

Funding

This is one of the studies supported by the State contract “High-Temperature Plasma Physics. Fundamental Problems of Plasma Dynamics, Confinement, and Heating in Three-Dimensional Magnetic Configurations” no. АААА-А19-119121790086-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tereshchenko.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, M.A. Decrease in the Mode Purity of Microwave Beams in the L-2M Stellarator Peripheral Plasma. Bull. Lebedev Phys. Inst. 47, 399–404 (2020). https://doi.org/10.3103/S1068335620120167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620120167

Keywords:

Navigation