Skip to main content
Log in

Hydrophobic Fractions of Triticum aestivum L. Extracts Contain Polyphenols and Alleviate Inflammation by Regulating Nuclear Factor-kappa B

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

As a nutritional supplement, wheatgrass (Triticum aestivum L.) is well-known for its anti-inflammatory effects that are exerted through signal transduction pathways. Wheatgrass was extracted in 80% ethanol (WGE), and the ethanol extracts were further fractionated using ethyl acetate, n-butanol, and water. To determine the antioxidant activity, WGE was tested using various radical-scavenging assays. To explain the anti-inflammatory mechanisms, western blotting, reverse-transcription polymerase chain reaction, luciferase assay, immunofluorescence staining, and the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation were performed using mouse macrophage cells (RAW 264.7). Inhibition of proinflammatory and Th2 cytokines was analyzed using a 2,4-dinitrochlorobenzene-induced contact dermatitis mouse model. WGE exhibited a strong antioxidant activity in radical scavenging-assays conducted using artificial and natural substrates. The ethyl acetate and n-butanol fractions (hydrophobic fractions) obtained from the 80% ethanolic extract, inhibited the expression of inducible nitric oxide synthase gene, whereas the aqueous layer (the hydrophilic fraction) showed no inhibitory effects. In addition, the hydrophobic fractions inhibited nuclear factor-kappa B (NF-κB) and reduced phosphorylation of MAPK, indicating that inflammation was alleviated possibly by the regulation of NF-κB signaling. This mechanism was further elucidated using the RAW 264.7 cell line and mouse model. Using high-performance liquid chromatography, the hydrophobic fractions were separated into over 10 phenolic compounds, among which benzoic acid, quercetin, and luteolin were abundant. The study demonstrated that wheatgrass is a potential nutraceutical candidate with antioxidant and anti-inflammatory properties for future use in health foods and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Hung, P. (2016) Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 56: 25–35.

    Article  CAS  PubMed  Google Scholar 

  2. Bar-Sela, G., M. Cohen, E. Ben-Arye, and R. Epelbaum (2015) The medical use of wheatgrass: review of the gap between basic and clinical applications. Mini. Rev. Med. Chem. 15: 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  3. Oh, H. S., W. Cho, S. B. Tak, S. Kim, S. P. Hong, and S. O. Kim (2019) Triticum aestivum ethanolic extract improves nonalcoholic fatty liver disease in mice fed a choline-deficient or high-fat diet. J. Sci. Food Agric. 99: 2602–2609.

    Article  CAS  PubMed  Google Scholar 

  4. Shakya, G., S. Balasubramanian, and R. Rajagopalan (2015) Methanol extract of wheatgrass induces G1 cell cycle arrest in a p53-dependent manner and down regulates the expression of cyclin D1 in human laryngeal cancer cells-an in vitro and in silico approach. Pharmacogn. Mag. 11: S139–S147.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni, S. D., R. Acharya, A. G. C. Nair, N. S. Rajurkar, and A. V. R. Reddy (2006) Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food Chem. 95: 699–707.

    Article  CAS  Google Scholar 

  6. Lee, M. S., J. S. Han, and A. J. Kim (2018) Quality characteristics of inner beauty foods (Mook) prepared with mixture of mulberry leaf and fruit powder. Asian J. Beauty Cosmetol. 16: 487–498.

    Article  Google Scholar 

  7. Padalia, S., S. Drabu, I. Raheja, A. Gupta, and M. Dhamija (2010) Multitude potential of wheatgrass juice (Green Blood): An overview. Chron. Young Sci. 1: 23–28.

    Google Scholar 

  8. Falcioni, G., D. Fedeli, L. Tiano, I. Calzuola, L. Mancinelli, V. Marsili, and G. Gianfranceschi (2002) Antioxidant activity of wheat sprouts extract in vitro: inhibition of DNA oxidative damage. J. Food Sci. 67: 2918–2922.

    Article  CAS  Google Scholar 

  9. Perron, N. R. and J. L. Brumaghim (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53: 75–100.

    Article  CAS  PubMed  Google Scholar 

  10. Žilić, S. (2016) Phenolic compounds of wheat. Their content, antioxidant capacity and bioaccessibility. MOJ Food Process. Technol. 2: 85–89.

    Google Scholar 

  11. Lee, A. J., K. J. Cho, and J. H. Kim (2015) MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp. Mol. Med. 47: e156.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, M. H., M. J. Kim, J. H. Lee, J. I. Han, J. H. Kim, D. E. Sok, and M. R. Kim (2011) Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J. Med. Food. 14: 732–738.

    Article  CAS  PubMed  Google Scholar 

  13. Zamora, R., Y. Vodovotz, and T. R. Billiar (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6: 347–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hinz, B. and K. Brune (2002) Cyclooxygenase-2—10 years later. J. Pharmacol. Exp. Ther. 300: 367–375.

    Article  CAS  PubMed  Google Scholar 

  15. Prescott, S. M. and F. A. Fitzpatrick (2000) Cyclooxygenase-2 and carcinogenesis. Biochim. Biophys. Acta. 1470: M69–M78.

    CAS  PubMed  Google Scholar 

  16. Kang, Y. J., U. R. Mbonye, C. J. DeLong, M. Wada, and W. L. Smith (2007) Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog. Lipid Res. 46: 108–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Agarwal, R., C. Agarwal, H. Ichikawa, R. P. Singh, and B. B. Aggarwal (2006) Anticancer potential of silymarin: from bench to bed side. Anticancer. Res. 26: 4457–4498.

    CAS  PubMed  Google Scholar 

  18. Hunter, P. (2012) The inflammation theory of disease: The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 13: 968–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, M. J., Y. C. Yoo, H. J. Kim, S. K. Shin, E. J. Sohn, A. Y. Min, N. Y. Sung, and M. R. Kim (2014) Aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice. J. Med. Food. 17: 1057–1063.

    Article  PubMed  Google Scholar 

  20. Galland, L. (2010) Diet and inflammation. Nutr. Clin. Pract. 25: 634–640.

    Article  PubMed  Google Scholar 

  21. Rahman, I., S. K. Biswas, and P. A. Kirkham (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 72: 1439–1452.

    Article  CAS  PubMed  Google Scholar 

  22. Santangelo, C., R. Varì, B. Scazzocchio, R. Di Benedetto, C. Filesi, and R. Masella (2007) Polyphenols, intracellular signalling and inflammation. Ann. Ist. Super. Sanita. 43: 394–405.

    CAS  PubMed  Google Scholar 

  23. Sim, J. H., M. H. Choi, H. J. Shin, and J. E. Lee (2017) Wheatgrass extract ameliorates hypoxia-induced mucin gene expression in A549 cells. Pharmacogn. Mag. 13: 7–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ryu, E. M., H. S. Choi, and H. J. Shin (2014) Effect of coffee grounds’ residue on the growth and chlorophyll content of Korean wheat sprout. KSBB J. 29: 106–111.

    Article  Google Scholar 

  25. Choi, M. H., H. G. Jo, J. H. Yang, S. H. Ki, and H. J. Shin (2018) Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int. J. Mol. Sci. 19: 409.

    Article  PubMed Central  Google Scholar 

  26. Yang, J. H., M. H. Choi, S. H. Yang, S. S. Cho, S. J. Park, H. J. Shin, and S. H. Ki (2017) Potent anti-inflammatory and antiadipogenic properties of bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. J. Agric. Food Chem. 65: 6665–6673.

    Article  CAS  PubMed  Google Scholar 

  27. Reddy, N. S., S. Navanesan, S. K. Sinniah, N. A. Wahab, and K. S. Sim (2012) Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement Altern. Med. 12: 128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halliwell, B. and J. M. Gutteridge (1981) Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicals. FEBS Lett. 128: 347–352.

    Article  CAS  PubMed  Google Scholar 

  29. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126: 131–138.

    Article  CAS  PubMed  Google Scholar 

  30. Huong, P. T. T., M. Y. Lee, K. Y. Lee, I. Y. Chang, S. K. Lee, S. P. Yoon, D. C. Lee, and Y. J. Jeon (2012) Synergistic induction of iNOS by IFN-γ and glycoprotein isolated from Dioscorea batatas. Korean J. Physiol. Pharmacol. 16: 431–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hibbs, J. B., R. R. Taintor, and Z. Vavrin (1987) Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 235: 473–476.

    Article  CAS  PubMed  Google Scholar 

  32. Palmer, R. M., D. S. Ashton, and S. Moncada (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 333: 664–666.

    Article  CAS  PubMed  Google Scholar 

  33. Tunon, M. J., M. V. Garcia-Mediavilla, S. Sanchez-Campos, and J. Gonzalez-Gallego (2009) Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab. 10: 256–271.

    Article  CAS  PubMed  Google Scholar 

  34. Gloire, G. and J. Piette (2009) Redox regulation of nuclear post-translational modifications during NF-κB activation. Antioxid. Redox Signal. 11: 2209–2222.

    Article  CAS  PubMed  Google Scholar 

  35. Flier, J., D. M. Boorsma, P. J. van Beek, C. Nieboer, T. J. Stoof, R. Willemze, and C. P. Tensen (2001) Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194: 398–405.

    Article  CAS  PubMed  Google Scholar 

  36. Benincasa, P., G. Tosti, M. Farneselli, S. Maranghi, E. Bravi, O. Marconi, B. Falcinelli, and M. Guiducci (2020) Phenolic content and antioxidant activity of einkorn and emmer sprouts and wheatgrass obtained under different radiation wavelengths. Ann. Agric. Sci. 65: 68–76.

    Article  Google Scholar 

  37. Niroula, A., S. Khatri, D. Khadka, and R. Timilsina (2019) Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. Int. J. Food Prop. 22: 427–437.

    Article  CAS  Google Scholar 

  38. Amici, M., L. Bonfili, M. Spina, V. Cecarini, I. Calzuola, V. Marsili, M. Angeletti, E. Fioretti, R. Tacconi, G. L. Gianfranceschi, and A. M. Eleuteri (2008) Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie. 90: 790–801.

    Article  CAS  PubMed  Google Scholar 

  39. Calzuola, I., V. Marsili, and G. L. Gianfranceschi (2004) Synthesis of antioxidants in wheat sprouts. J. Agric. Food Chem. 52: 5201–5206.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, L. and Z. Cheng (2007) Antioxidant properties of wheat phenolic acids. pp. 54–72. In: L. Yu (ed.). Wheat Antioxidants. Wiley. John Wiley & Sons, Inc. HOB, USA.

  41. Aydos, O. S., A. Avci, T. Özkan, A. Karadag, E. Gurleyik, B. Altinok, and A. Sunguroglu (2011) Antiproliferative, apoptotic and antioxidant activities of wheatgrass (Triticum aestivum L.) extract on CML (K562) cell line. Turk. J. Med. Sci. 41: 657–663.

    CAS  Google Scholar 

  42. Graf, E. (1992) Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13: 435–448.

    Article  CAS  PubMed  Google Scholar 

  43. Kardas, T. A. and I. Durucasu (2014) A new analytical method for the determination of phenolic compounds and their antioxidant activities in different wheat grass varieties. Ekoloji. 23: 73–80.

    Article  CAS  Google Scholar 

  44. Jaiswal, S. K., R. Prakash, A. V. Skalny, M. G. Skalnaya, A. R. Grabeklis, A. A. Skalnaya, A. A. Tinkov, F. Zhang, X. Guo, and N. T. Prakash (2018) Synergistic effect of selenium and UV-B radiation in enhancing antioxidant level of wheatgrass grown from selenium rich wheat. J. Food Biochem. 42: e12577.

    Article  Google Scholar 

  45. Yang, F., T. K. Basu, and B. Ooraikul (2001) Studies on germination conditions and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr. 52: 319–330.

    Article  CAS  PubMed  Google Scholar 

  46. Luyen, B. T. T., B. H. Tai, N. P. Thao, J. Y. Cha, Y. M. Lee, and Y. H. Kim (2014) A new phenolic component from Triticum aestivum sprouts and its effects on LPS-stimulated production of nitric oxide and TNF-α in RAW 264.7 cells. Phytother. Res. 28: 1064–1070.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S. L., S. K. Kim, and C. H. Park (2004) Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 37: 319–327.

    Article  CAS  Google Scholar 

  48. Kim, S. J., I. S. M. Zaidul, T. Maeda, T. Suzuki, N. Hashimoto, S. Takigawa, T. Noda, C. Matsuura-Endo, and H. Yamauchi (2007) A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Sci. Hortic. 115: 13–18.

    Article  CAS  Google Scholar 

  49. Złotek, U., U. Szymanowska, A. Jakubczyk, M. Sikora, and M. Świeca (2019) Effect of arachidonic and jasmonic acid elicitation on the content of phenolic compounds and antioxidant and anti-inflammatory properties of wheatgrass (Triticum aestivum L.). Food Chem. 288: 256–261.

    Article  PubMed  Google Scholar 

  50. Chiu, L. C. M., C. K. L. Kong, and V. E. C. Ooi (2005) The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion. Int. J. Mol. Med. 16: 735–740.

    CAS  PubMed  Google Scholar 

  51. Kang, J. S., Y. J. Jeon, H. M. Kim, S. H. Han, and K. H. Yang (2002) Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 302: 138–144.

    Article  CAS  PubMed  Google Scholar 

  52. Whent, M., H. Huang, Z. Xie, H. Lutterodt, L. Yu, E. P. Fuerst, C. F. Morris, L. L. Yu, and D. Luthria (2012) Phytochemical composition, anti-inflammatory, and antiproliferative activity of whole wheat flour. J. Agric. Food Chem. 60: 2129–2135.

    Article  CAS  PubMed  Google Scholar 

  53. Chun, O. K., S. J. Chung, K. J. Claycombe, and W. O. Song (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in US adults. J. Nutr. 138: 753–760.

    Article  CAS  PubMed  Google Scholar 

  54. Karlsen, A., L. Retterstøl, P. Laake, I. Paur, S. Kjølsrud-Bøhn, L. Sandvik, and R. Blomhoff (2007) Anthocyanins inhibit nuclear factor-κ B activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr. 137: 1951–1954.

    Article  CAS  PubMed  Google Scholar 

  55. Marzocchella, L., M. Fantini, M. Benvenuto, L. Masuelli, I. Tresoldi, A. Modesti, and R. Bei (2011) Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat. Inflamm. Allergy Drug Discov. 5: 200–220.

    Article  CAS  PubMed  Google Scholar 

  56. Kundu, J. K., Y. K. Shin, and Y. J. Surh (2006) Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-κB and AP-1 as prime targets. Biochem. Pharmacol. 72: 1506–1515.

    Article  CAS  PubMed  Google Scholar 

  57. Atawia, R. T., H. H. Mosli, M. G. Tadros, A. E. Khalifa, H. A. Mosli, and A. B. Abdel-Naim (2014) Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB. Naunyn Schmiedebergs Arch. Pharmacol. 387: 1131–1140.

    Article  CAS  PubMed  Google Scholar 

  58. Xie, Q. W., Y. Kashiwabara, and C. Nathan (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269: 4705–4708.

    Article  CAS  PubMed  Google Scholar 

  59. Lowenstein, C. J., E. W. Alley, P. Raval, A. M. Snowman, S. H. Snyder, S. W. Russell, and W. J. Murphy (1993) Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. USA. 90: 9730–9734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yin, H., X. Pan, Z. Song, S. Wang, L. Yang, and G. Sun (2014) Protective effect of wheat peptides against indomethacin-induced oxidative stress in IEC-6 cells. Nutrients. 6: 564–574.

    Article  PubMed  PubMed Central  Google Scholar 

  61. La Marca, M., P. Beffy, A. Pugliese, and V. Longo (2013) Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes. PLoS One. 8: e83538.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun, T. Y., J. S. Li, and C. Chen (2015) Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. J. Food Drug. Anal. 23: 709–718.

    Article  CAS  PubMed  Google Scholar 

  63. Akbas, E., M. Kilercioglu, O. N. Onder, A. Koker, B. Soyler, and M. H. Oztop (2017) Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization. J. Funct. Foods. 28: 19–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to express their gratitude to the Chosun University Hospital, Gwangju, South Korea for allowing access to their experimental facilities including the microscope.

Funding

This work was supported in part by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A3A01012281), and also by the National Research Foundation of Korea grant funded by the Korea government (Ministry of Science and ICT) (NRF-2017R1A2B4006204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Jae Shin or Young Jin Jeon.

Ethics declarations

Conflict of Interest The authors confirm that they have no conflicts of interest with respect to the work described in this manuscript.

Ethical Statement All of the animal experiments were approved by the Institutional Animal Care and Use Committee of Chosun University and no informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, MH., Lee, M.Y., Yang, SH. et al. Hydrophobic Fractions of Triticum aestivum L. Extracts Contain Polyphenols and Alleviate Inflammation by Regulating Nuclear Factor-kappa B. Biotechnol Bioproc E 26, 93–106 (2021). https://doi.org/10.1007/s12257-020-0352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0352-7

Keywords

Navigation