Skip to main content
Log in

Kinetic Model for Simultaneous Saccharification and Fermentation of Brewers’ Spent Grain Liquor Using Lactobacillus delbrueckii Subsp. lactis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Brewers’ spent grain (BSG) liquor can be obtained by pressing fresh BSG and was recently proposed as a fermentation medium. A kinetic model was established, that can predict lactate formation and cell growth of Lactobacillus delbrueckii subsp. lactis with three BSG liquors of different origin in a simultaneous saccharification and fermentation approach. The kinetic model assumes a multi-substrate dependence of glucose and several nitrogen-containing molecule classes on cell growth, substrate uptake, and lactate formation. Furthermore, the model contains terms for the enzymatic degradation of 1,4-α-bond glucose oligomers. The nutrient content of the fermentation media, based on BSG liquor, varied broadly in terms of total carbohydrates (26.27 g·L−1 to 107.17 g·L−1), amino acids (1.52 g·L−1 to 6.78 g·L−1), and proteins (0.16 g·L−1 to 0.46 g·L−1). The deviation between experiment and simulation was — in relation to the large differences in media composition — quite small and ranged from 1.6% to 12.9% (final cell density) and from 5.0% to 24.8% (total lactate concentration). Both the experiment and the simulation showed that serine and alanine play an essential role in the metabolism of the organism. In general, the ratio of carbohydrates to amino acids in the fermentation medium is very important for L. delbrueckii subsp. lactis. Therefore, the model can contribute to control the bioprocess and assess fermentation kinetics for unknown BSG liquors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSG:

Brewers’ spent grain

CDW:

Cell dry weight

DSMZ:

German Collection of Microorganisms and Cellcultures

MRS:

Cultivation medium proposed by De Man, Rogosa, Sharpe

N :

Stirrer speed

OD600 :

Optical density measured at a wavelength of 600 nm

PLA:

Poly lactic acid

Q N2 :

Volumetric nitrogen flow

RK4 :

4th order Runge-Kutta algorithm

SSF:

Simultaneous saccharification and fermentation

w%:

weight percentage

AA_total :

Total (16) amino acids g·L−1

Ala :

Alanine g·L−1

f :

Dimensionless exponent n.a.

h :

Dimensionless exponent n.a.

k 1 :

Reaction constant of R1 h−1

k 2 :

Reaction constant of R2 h−1

k 3 :

Reaction constant of R3 h−1

K AA_total :

Monod constant for amino acids g·L−1

k Ala :

Reaction constant alanine h−1

K Prot :

Monod constant for protein g·L−1

K S4 :

Monod constant for glucose g·L−1

K Ser :

Monod constant for serine g·L−1

M :

Molecular weight g·mol−1

P :

Product (lactate) g·L−1

P m :

Inhibiting lactate concentration g·L−1

P max :

Maximum lactate concentration g·L−1

Prot :

Protein g·L−1

R 1 :

Enzymatic reaction 1 n.a.

R 2 :

Enzymatic reaction 2 n.a.

R 3 :

Enzymatic reaction 3 n.a.

r p :

Product (lactate) formation rate gLactate·gCDW−1·h−1

S 1 :

Malto oligomers g·L−1

S 12 :

Mass adjustment factor of R1 n.a.

S 2 :

Maltotriose g·L−1

S 23 :

Mass adjustment factor of R2 n.a.

S 3 :

Maltose g·L−1

S 34 :

Mass adjustment factor of R3 n.a.

S 4 :

Glucose g·L−1

Ser :

Serine g·L−1

S_total :

Total carbohydrates g·L−1

X :

Cell dry weight g·L−1

X m :

Stationary cell concentration g·L−1

X max :

Maximum cell concentration g·L−1

Y P/X :

Lactate/biomass yield gLactate·gCDW−1

Y X/AA_total :

Biomass/amino acids yield gCDW·gaminoacids−1

Y X/Prot :

Biomass/protein yield gCDW·gProtein−1

Y X/S4 :

Biomass/glucose yield gCDW·gGlucose−1

Y X/Ser :

Biomass/serine yield gCDW·gSerine−1

α :

Growth-coupled lactate formation coefficient gLactate·gCDW−1

β :

Growth-uncoupled lactate formation coefficient gLactate·gCDW−1·h−1

μ :

Growth rate h−1

μ max :

Maximum specific growth rate h−1

References

  1. Dosuky, A. S., F. N. Nasr, E. T. A. Yousef, and O. S. Barakat (2019) Bio-production of lactic acid from salted whey and whey permeate. Plant. Arch. 19: 793–798.

    Google Scholar 

  2. Dusselier, M., P. Van Wouwe, A. Dewaele, E. Makshinaa, and B. F. Sels (2013) Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci. 6: 1415–1442.

    Article  CAS  Google Scholar 

  3. Prasad, S., K. Srikanth, A. M. Limaye, and S. Sivaprakasam (2014) Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feedstock. Biotechnol. Lett. 36: 1303–1307.

    Article  CAS  Google Scholar 

  4. Reddy Tadi, S. R., A. E V R A. M. Limaye, and S. Sivaprakasam (2017) Enhanced production of optically pure d (-) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based-fermentation medium. Biotechnol. Appl. Biochem. 63: 279–289.

    Article  Google Scholar 

  5. Tanaka, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97: 211–217.

    Article  CAS  Google Scholar 

  6. Akermann, A., J. Weiermüller, and R. Ulber (2019) Development of a biorefinery concept for brewers’ spent grain with a preliminary pressing step. Chem. Ing. Tech. 91: 1606–1614.

    Article  CAS  Google Scholar 

  7. Akermann, A., J. Weiermüller, J. Christmann, L. Guirande, G. Glaser, A. Knaus, and R. Ulber (2020) Brewers’ spent grain liquor as a feedstock for lactate production with Lactobacillus delbrueckii subsp. lactis. Eng. Life Sci. 20: 168–180.

    Article  CAS  Google Scholar 

  8. Tsuji, H. (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5: 569–597.

    Article  CAS  Google Scholar 

  9. Wang, J. and W. Wan (2009) Kinetic models for fermentative hydrogen production: A review. Int. J. Hydrogen Energy. 34: 3313–3323.

    Article  CAS  Google Scholar 

  10. Messens, W., J. Verluyten, F. Leroy, and L. De Vuyst (2003) Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int. J. Food Microbiol. 81: 41–52.

    Article  CAS  Google Scholar 

  11. Åkerberg, C., K. Hofvendahl, G. Zacchi, and B. Hahn-Hägerdal (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl. Microbiol. Biotechnol. 49: 682–690.

    Google Scholar 

  12. Amrane, A. (2001) Batch cultures of supplemented whey permeate using Lactobacillus helveticus: Unstructured model for biomass formation, substrate consumption and lactic acid production. Enzyme Microb. Technol. 28: 827–834.

    Article  CAS  Google Scholar 

  13. Kulozik, U. and J. Wilde (1999) Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enzyme Microb. Technol. 24: 297–302.

    Article  CAS  Google Scholar 

  14. Monteagudo, J. M., L. Rodríguez, J. Rincón, and J. Fuertes (1997) Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. J. Chem. Technol. Biotechnol. 68: 271–276.

    Article  CAS  Google Scholar 

  15. Kumar Dutta, S., A. Mukherjee, and P. Chakraborty (1996) Effect of product inhibition on lactic acid fermentation: Simulation and modelling. Appl. Microbiol. Biotechnol. 46: 410–413.

    Article  CAS  Google Scholar 

  16. Pleissner, D., F. Demichelis, S. Mariano, S. Fiore, I. M. N. Gutiérrez, R. Schneider, and J. Venus (2017) Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean Prod. 143: 615–623.

    Article  CAS  Google Scholar 

  17. Hu, J., Y. Lin, Z. Zhang, T. Xiang, Y. Mei, S. Zhao, Y. Liang, and N. Peng (2016) High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour. Technol. 214: 74–80.

    Article  CAS  Google Scholar 

  18. De Man, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23: 130–135.

    Article  Google Scholar 

  19. Weiermüller, J., A. Akermann, T. Sieker, and R. Ulber (2020) Bioraffinerien auf Basis schwach verholzter Biomasse. Chem. Ing. Tech. 92: 1711–1722.

    Article  Google Scholar 

  20. Lynch, K. M., E. J. Steffen, and E. K. Arendt (2016) Brewers’ spent grain: a review with an emphasis on food and health. J. Inst. Brew. 122: 553–568.

    Article  CAS  Google Scholar 

  21. Goni, I., A. Garcia-Alonso, and F. Saura-Calixto (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17: 427–437.

    Article  CAS  Google Scholar 

  22. Schnell, S. and C. Mendoza (2004) The condition for pseudofirst-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys. Chem. 107: 165–174.

    Article  CAS  Google Scholar 

  23. Edwards, C. H., F. J. Warren, P. J. Milligan, P. J. Butterworth, and P. R. Ellis (2014) A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food Funct. 5: 2751–2758.

    Article  CAS  Google Scholar 

  24. Altiok, D., F. Tokatli, and S. Harsa (2006) Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). J. Chem. Technol. Biotechnol. 81: 1190–1197.

    Article  CAS  Google Scholar 

  25. Narziß, L. and W. Back (2009) Die Bierbrauerei: Band 2: Die Technologie der Würzebereitung. 8th ed., p. 254. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  26. Liu, E., H. Zheng, P. Hao, T. Konno, Y. Yu, H. Kume, M. Oda, and Z. S. Ji (2012) A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey. Curr. Microbiol. 65: 742–751.

    Article  CAS  Google Scholar 

  27. Berry, A. R., C. M. M. Franco, W. Zhang, and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Lett. 21: 163–167.

    Article  CAS  Google Scholar 

  28. Levenspiel, O. (1980) The monod equation: A revisit and a generalization to product inhibition situations. Biotechnol. Bioeng. 22: 1671–1687.

    Article  CAS  Google Scholar 

  29. Gänzle, M. G. (2015) Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106–117.

    Article  Google Scholar 

  30. Buchholz, J., M. Graf, B. Blombach, and R. Takors (2014) Improving the carbon balance of fermentations by total carbon analyses. Biochem. Eng. J. 90: 162–169.

    Article  CAS  Google Scholar 

  31. Burgos-Rubio, C. N., M. R. Okos, and P. C. Wankat (2000) Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Prog. 16: 305–314.

    Article  CAS  Google Scholar 

  32. Youssef, C. B., G. Goma, and A. Olmos-Dichara (2005) Kinetic modelling of Lactobacillus casei ssp. rhamnosus growth and lactic acid production in batch cultures under various medium conditions. Biotechnol. Lett. 27: 1785–1789.

    PubMed  Google Scholar 

  33. Polakovič, M. and J. Bryjak (2004) Modelling of potato starch saccharification by an Aspergillus niger glucoamylase. Biochem. Eng. J. 18: 57–63.

    Article  Google Scholar 

  34. Kunji, E. R., I. Mierau, A. Hagting, B. Poolman, and W. N. Konings (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek. 70: 187–221.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was performed as a part of the European Union project BIOVAL, which is funded by the European Regional Development Fund EFRE-interreg (018-4-09-021). We wish to express our gratitude for financial support. Special thanks goes to the Novozymes A/S for suppling the glucoamylase mixture Attenuzyme® Core.

The authors declare no conflict of interest.

No ethical approval required.

No informed consent required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Ulber.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akermann, A., Weiermüller, J., Lenz, S. et al. Kinetic Model for Simultaneous Saccharification and Fermentation of Brewers’ Spent Grain Liquor Using Lactobacillus delbrueckii Subsp. lactis. Biotechnol Bioproc E 26, 114–124 (2021). https://doi.org/10.1007/s12257-020-0153-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0153-z

Keywords

Navigation