Skip to main content
Log in

Polarization state of transmitted and emitted light in homogeneous and inhomogeneous medium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The interaction of linearly polarized light with self-assembled photonic crystals (opals) grown from polymeric colloids is studied. The experimental work is carried out on opals with and without dye molecules. These active and passive opals influence the polarization state of transmitted light very differently and the role of photonic stop band is evident. The active opals, when excited within the absorption band of the dye, emit light at a longer wavelength and the polarization state of emitted light is also studied in them. For comparison of these inhomogeneous crystalline samples with fully or partially homogeneous medium, the polarization state of light is also investigated in an aqueous solution with dissolved powder dye, and an aqueous suspension of dye-doped colloids. When the incident light is linearly polarized, the transmitted light from the passive opal is fully linearly polarized and that from the active opal is slightly elliptically polarized. In the same experiment, the fully homogeneous solution gives linear polarization while the partially homogeneous solution gives elliptical polarization in transmission. On the other hand, the emitted light from the active opal as well as from the two solution samples is found to be mostly unpolarized. The polarization anisotropy value, which characterizes the extent of polarization in an arbitrary light, has been calculated for all the samples from the spatially and spectrally resolved experimental data. This value is close to unity in transmitted light, implying linear polarization, for the fully inhomogeneous passive opal and fully homogeneous solution sample, while it is less than unity in the fully inhomogeneous active opal and partially homogeneous colloidal solution. The polarization anisotropy of emitted light, in all samples containing the dye, is close to zero signifying predominantly unpolarized nature. But the extent and type of inhomogeneity is found to influence the sign of the polarization anisotropy parameter extracted from the angle-resolved polarization measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Yablonovitch, T.J. Gmitter, Photonic band structure: the face-centered-cubic case. Phys. Rev. Lett. 63, 1950 (1989)

    Article  ADS  Google Scholar 

  2. K. Yoshino, S.B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A.A. Zakhidov, Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Appl. Phys. Lett. 73, 3506 (1998)

    Article  ADS  Google Scholar 

  3. M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, New York, 2009).

    Google Scholar 

  4. M. Patterson, S. Hughes, S. Schulz, D.M. Beggs, T.P. White, L. O’Faolain, T.F. Krauss, Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law. Phys. Rev. B 80, 195305 (2009)

    Article  ADS  Google Scholar 

  5. N. Ghosh, A. Pradhan, P.K. Gupta, S. Gupta, V. Jaiswal, R.P. Singh, Depolarization of light in a multiply scattering medium: Effect of the refractive index of a scatterer. Phys. Rev. E 70, 066607 (2004)

    Article  ADS  Google Scholar 

  6. A.V. Baryshev, A.B. Khanikaev, H. Uchida, M. Inoue, M.F. Limonov, Interaction of polarized light with three-dimensional opal-based photonic crystals. Phys. Rev. B 73, 033103 (2006)

    Article  ADS  Google Scholar 

  7. M.V. Rybin, A.V. Baryshev, M. Inoue, A.A. Kaplyanskii, V.A. Kosobukin, M.F. Limonov, A.K. Samusev, A.V. Sel’kin, Complex interaction of polarized light with three-dimensional opal-based photonic crystals: diffraction and transmission studies. Photon. Nanostruct. Fundam. Appl. 4, 146–154 (2006)

    Article  ADS  Google Scholar 

  8. S.G. Romanov, Specific features of polarization anisotropy in optical reflection and transmission of colloidal photonic crystals. Phys. Solid State 52, 844–854 (2010)

    Article  Google Scholar 

  9. A.V. Baryshev, M.E. Dokukin, A.M. Merzlikin, M. Inoue, Propagation of polarized light in opals: amplitude and phase anisotropy. J. Exp. Theor. Phys. 112, 361 (2011)

    Article  ADS  Google Scholar 

  10. G.M. Whitesides, B. Grzybowski, Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  ADS  Google Scholar 

  11. Y. Pu, W. Wang, R.B. Dorshow, B.B. Das, R.R. Alfano, Review of ultrafast fluorescence polarization spectroscopy. Appl. Opt. 52, 917–929 (2013)

    Article  ADS  Google Scholar 

  12. Y. Ding, H. Chen, Q. Yang, L. Feng, X. Hua, M. Wang, A fluorescence polarization immunoassay for detection of thiacloprid in environmental and agricultural samples. RSC Adv. 9, 36825–36830 (2019)

    Article  ADS  Google Scholar 

  13. B.D. Hamman, A.V. Oleinikov, G.G. Jokhadze, R.R. Traut, D.M. Jameson, Dimer/monomer equilibrium and domain separations of Escherichia coli ribosomal protein L7/L12. Biochemistry 35, 16680–16686 (1996)

    Article  Google Scholar 

  14. J. van Mameren, K. Vermeulen, G.J.L. White, E.G.G. Peterman, A polarized view on DNA under tension. J. Chem. Phys. 148, 123306 (2018)

    Article  ADS  Google Scholar 

  15. R. Camacho, D. Täuber, C. Hansen, J. Shi, L. Bousset, R. Melki, J.Y. Li, I.G. Scheblykin, 2D polarization imaging as a low-cost fluorescence method to detect α-synuclein aggregation ex vivo in models of Parkinson’s disease. Commun. Biol. 1, 157 (2018)

    Article  Google Scholar 

  16. S. Zhao, Y. Wang, H. Qu, Y. Liu, X. Zhou, A. Liu, W. Zheng, 2W high efficiency ridge-waveguide lasers with single transverse mode and low vertical divergence. IEEE Photon. Technol. Lett. 29, 23 (2017)

    Article  ADS  Google Scholar 

  17. T. Inoue, M. Yoshida, M.D. Zoysa, K. Ishizaki, S. Noda, Design of photonic crystal surface emitting lasers with enhanced in-plane optical feedback for high speed operation. Opt. Express 28, 5050–5057 (2020)

    Article  ADS  Google Scholar 

  18. H.T. Lin, K.S. Hsu, C.C. Chang, W.H. Lin, S.Y. Lin, S.W. Chang, Y.C. Chang, M.H. Shih, Photonic crystal circular nanobeam cavity laser with type-II GaSb/GaAs quantum rings as gain material. Sci. Rep. 10, 4757 (2020)

    Article  ADS  Google Scholar 

  19. B. Valeur, M.N. Berberan-Santos, Molecular Fluorescence (Wiley, Weinheim, 2012).

    Book  Google Scholar 

  20. G. Weber, Polarization of the Fluorescence of Solutions: In Fluorescence and Phosphorescence Analysis (Wiley, New York, 1966).

    Google Scholar 

  21. Z. Tian, B. Tian, J. Zhang, Synthesis and characterization of new rhodamine dyes with large Stokes shift. Dyes Pigm. 99, 3 (2013)

    Article  Google Scholar 

  22. V.N. Rai, Optical properties of Rhodamine B and Rhodamine 6G on silver surfaces. J. Phys. 31, 313–322 (1988)

    Google Scholar 

  23. P.-H. Chung, C. Tregidgo, K. Suhling, Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index. Methods Appl. Fluorescence 4, 045001 (2016)

    Article  ADS  Google Scholar 

  24. A.C. Albrecht, Polarizations and assignments of transitions: the method of photoselection. J. Mol. Spectrosc. 6, 84–108 (1961)

    Article  ADS  Google Scholar 

  25. A. Jablonski, On the notion of the emission anisotropy. Bull. Pol. Acad. Sci. Math. 38, 259–264 (1960)

    Google Scholar 

  26. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2010).

    Google Scholar 

  27. G. Weber, Rotational Brownian motion and polarization of the fluorescence of solutions. Adv. Protein Chem. 8, 415–459 (1953)

    Article  Google Scholar 

  28. J.R. Lakowicz, Time-dependent rotational rates of excited fluorophores: a linkage between fluorescence depolarization and solvent relaxation. Biophys. Chem. 19, 13–23 (1984)

    Article  Google Scholar 

  29. D.L. Andrews, A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 135, 195–201 (1989)

    Article  Google Scholar 

  30. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).

    Google Scholar 

  31. M.S. Reddy, R. Vijaya, I.D. Rukhlenko, M. Premaratne, Spatial and spectral distributions of emission from dye-doped photonic crystals in reflection and transmission geometries. J. Nanophoton. 6, 063526 (2012)

    Article  ADS  Google Scholar 

  32. R.V. Nair, R. Vijaya, Structural and optical characterization of photonic crystals synthesized using the inward growing self-assembling method. Appl. Phys. A 90, 559–563 (2008)

    Article  ADS  Google Scholar 

  33. W.L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, G.H. Wegdam, Strong effects of photonic band structures on the diffraction of colloidal crystals. Phys. Rev. B 53, 16231 (1996)

    Article  ADS  Google Scholar 

  34. J.J. Bohn, A. Tikhonov, S.A. Asher, Colloidal crystal growth monitored by Bragg diffraction interference fringes. J. Colloid Interface Sci. 350, 381–386 (2010)

    Article  ADS  Google Scholar 

  35. T. Li, C. Zhou, M. Jiang, UV absorption spectra of polystyrene. Polym. Bull. 25, 211–216 (1991)

    Article  Google Scholar 

  36. S.A. Ahmed, Z. Zang, K.M. Yoo, M.A. Ali, R.R. Alfano, Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media. Appl. Opt. 33, 2746–2750 (1994)

    Article  ADS  Google Scholar 

  37. A. Bavali, P. Parvin, M. Tavassoli, M.R. Mohebbifar, Angular distribution of laser-induced fluorescence emission of active dyes in scattering media. Appl. Opt. 57, B32–B38 (2018)

    Article  Google Scholar 

  38. A. Bavali, P. Parvin, S.Z. Mortazavi, M. Mohammadian, M.R. Mousavi Pour, Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. Appl. Opt. 53, 5398–5409 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work presented here is partially funded by DST (TDT/DDP-05/2017) and MHRD/DRDO (Imprint project no. 4194) from the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vijaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahani, P., Vijaya, R. Polarization state of transmitted and emitted light in homogeneous and inhomogeneous medium. Appl. Phys. B 127, 27 (2021). https://doi.org/10.1007/s00340-021-07574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07574-0

Navigation