Skip to main content
Log in

Low-aberration single-grating femtosecond stretcher with two concave parabolic mirrors

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel configuration of a low-aberration single diffraction grating stretcher for femtosecond chirped-pulse amplification lasers is proposed. The stretcher configuration employs two identical concave parabolic mirrors separated by a distance equal to their focal length. Using the numerical ray-tracing approach, the proposed design is compared with conventional Martinez and Öffner configurations in terms of high-order dispersions, aberrations of the spectral phase, and angular chirp. Although the proposed design is not completely aberration-free, it can exhibit comparable or lower aberrations than those of the single-grating Öffner configuration with similar parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  2. Walmsley, L. Waxer, and C. Dorrer, Rev. Sci. Instrum. 72, 1 (2001)

  3. B.E. Lemoff, C.P.J. Barty, Opt. Lett. 18, 1651 (1993)

    Article  ADS  Google Scholar 

  4. W.E. White, F.G. Patterson, R.L. Combs, D.F. Price, R.L. Shepherd, Opt. Lett. 18, 1343 (1993)

    Article  ADS  Google Scholar 

  5. S. Kane, J. Squier, J. Opt. Soc. Am. B 14, 1237 (1997)

    Article  ADS  Google Scholar 

  6. E. Treacy, IEEE J. Quantum Electron. 5, 454 (1969)

    Article  ADS  Google Scholar 

  7. P. Banks, M. Perry, V. Yanovsky, S. Fochs, B. Stuart, J. Zweiback, IEEE J. Quantum Electron. 36, 268 (2000)

    Article  ADS  Google Scholar 

  8. Š. Vyhlídka, D. Kramer, A. Meadows, B. Rus, Opt. Commun. 414, 207 (2018)

  9. O. Martinez, IEEE J. Quantum Electron. 24, 2530 (1988)

    Article  ADS  Google Scholar 

  10. A. Kostenbauder, IEEE J. Quantum Electron. 26, 1148 (1990)

  11. V. Chauhan, J. Cohen, R. Trebino, Appl. Opt. 49, 6840 (2010)

    Article  ADS  Google Scholar 

  12. G.H. Spencer, M.V.R.K. Murty, J. Opt. Soc. Am. 52, 672 (1962)

    Article  ADS  Google Scholar 

  13. Z. Zhang, T. Yagi, T. Arisawa, Appl. Opt. 36, 3393 (1997)

    Article  ADS  Google Scholar 

  14. J. Jiang, Z. Zhang, T. Hasama, J. Opt. Soc. Am. B 19, 678 (2002)

    Article  ADS  Google Scholar 

  15. F. Druon, M. Hanna, G. Lucas-Leclin, Y. Zaouter, D. Papadopoulos, P. Georges, J. Opt. Soc. Am. B 25, 754 (2008)

    Article  ADS  Google Scholar 

  16. Š. Vyhlídka, D. Kramer, G. Kalinchenko, B. Rus, Opt. Express 24, 30421 (2016)

  17. S. Li, C. Wang, Y. Liu, Y. Xu, Y. Li, X. Liu, X. Gan, L. Yu, X. Liang, Y. Leng, R. Li, Opt. Express 25, 17488 (2017)

    Article  ADS  Google Scholar 

  18. P. Tournois, Opt. Commun. 140, 245 (1997)

    Article  ADS  Google Scholar 

  19. H. Takada, M. Kakehata, K. Torizuka, Opt. Lett. 31, 1145 (2006)

    Article  ADS  Google Scholar 

  20. X. Zhou, T. Kanai, D. Yoshitomi, T. Sekikawa, S. Watanabe, Appl. Phys. B 81, 13 (2005)

    Article  ADS  Google Scholar 

  21. I.V. Yakovlev, Quantum Electron. 44, 393 (2014)

    Article  ADS  Google Scholar 

  22. O. Martinez, IEEE J. Quantum Electron. 23, 59 (1987)

    Article  ADS  Google Scholar 

  23. M. Pessot, P. Maine, G. Mourou, Opt. Commun. 62, 419 (1987)

    Article  ADS  Google Scholar 

  24. J. Zhou, C.P. Huang, M.M. Murnane, H.C. Kapteyn, Opt. Lett. 20, 64 (1995)

    Article  ADS  Google Scholar 

  25. D. Javorkova, P. Neumayer, Th. Kühl, S. Borneis, E. Brambrink, C. Bruske, E. Gaul, S. Götte, T. Hahn, H. M. Heuck, S. Kunzer, T. Merz, D. Reemts, M. Roth, F. Schrader, A. Tauschwitz, R. Thiel, D. Ursescu, P. Wiewior, and B. Zielbauer, Proc. SPIE 5945, 14th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 59451C-1 (2006)

  26. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, M.C. Kaluza, Appl. Phys. B 101, 93 (2010)

    Article  ADS  Google Scholar 

  27. D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, C.T. Cotton, Opt. Lett. 20, 2114 (1995)

    Article  ADS  Google Scholar 

  28. G. Cheriaux, P. Rousseau, F. Salin, J.P. Chambaret, B. Walker, L.F. Dimauro, Opt. Lett. 21, 414 (1996)

    Article  ADS  Google Scholar 

  29. J. Bromage, M. Millecchia, J. Bunkenburg, R. K. Jungquist, C. Dorrer, and J. D. Zuegel, Conference on Lasers and Electro-Optics 2012 OSA Technical Digest (online) (Optical Society of America, 2012), paper CM4D.4. (2012)

  30. A. Offner, U.S. patent 3,748,015 (1973)

  31. V.E. Leshchenko, V.I. Trunov, E.V. Pestryakov, S.A. Frolov, Atmos. Ocean. Opt. 27, 573 (2014)

    Article  Google Scholar 

  32. Š. Vyhlídka, D. Kramer, M. Kepler, E. Gaul, and B. Rus, Proc. SPIE 10238, High-Power, High-Energy, and High-Intensity Laser Technology III, 102380T (2017)

  33. A.S. Zuev, V.N. Ginzburg, A.A. Kochetkov, A.A. Shaykin, I.V. Yakovlev, Quantum Electron. 47, 705 (2017)

    Article  ADS  Google Scholar 

  34. V. Bagnoud, F. Salin, IEEE J. Sel. Top. Quantum Electron. 4, 445 (1998)

    Article  ADS  Google Scholar 

  35. S. P. Le Blanc, E. W. Gaul, and M. C. Downer, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178), San Francisco, CA, USA, pp. 280 (1998)

  36. V. Bagnoud, F. Salin, Appl. Phys. B 70, S165 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (RSF) (Grant #20-12-00348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kostryukov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryukov, P. Low-aberration single-grating femtosecond stretcher with two concave parabolic mirrors. Appl. Phys. B 127, 26 (2021). https://doi.org/10.1007/s00340-021-07577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07577-x

Navigation