Skip to main content
Log in

Exponential Stabilization of the Wave Equation on Hyperbolic Spaces with Nonlinear Locally Distributed Damping

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this article, we consider the wave equation on hyperbolic spaces \(\mathbb {H}^n(n\ge 2)\) with nonlinear locally distributed damping as follow:

$$\begin{aligned} {\left\{ \begin{array}{ll}u_{tt}-\Delta _g u+a(x)g(u_t)=0\qquad (x,t)\in \mathbb {H}^n\times (0,+\infty ), \\ u(x,0)=u_0(x),\quad u_0(x,0)=u_1(x)\qquad x\in \mathbb {H}^n. \end{array}\right. } \end{aligned}$$
(1)

It is well-known that the energy of the system (1) is of polynomial decay in the Euclidean space. However, on hyperbolic spaces, owing to the following inequality

$$\begin{aligned} \int _{\mathbb {H}^n} u^2 dx_g \le C \int _{\mathbb {H}^n} |\nabla _g u|_g^2dx_g , \quad for \quad u\in H^1(\mathbb {H}^n), \end{aligned}$$
(2)

we prove the exponential stabilization of the wave equation by multiplier methods and compactness-uniqueness arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bortot, C.A., Cavalcanti, M.M., Domingos Cavalcanti, V.N., Piccione, P.: Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds. Appl. Math. Optim. 78, 219–265 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Bardos, C.A., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Burq, N., Joly, R.: Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18(6), 1650012 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bouclet, J.M., Royer, J.: Local energy decay for the damped wave equation. J. Funct. Anal. 266, 4538–4615 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Barbu, V., Lasiecka, Rammaha A.M: Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms. Indiana Univ. Math. J. 56(3), 995–1021 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Cavalcanti, M.M., Domingos Cavalcanti, V.N.: Existence and asymptotic stability for evolution problems on manifolds with damping and source terms. J. Math. Anal. Appl. 291(1), 109–127 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Uniform stabilization of the wave equation on compact surfaces and locally distributed damping. Trans. AMS 361(9), 4561–4580 (2009)

    MATH  Google Scholar 

  8. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result. Arch. Ration. Mech. Anal. 197, 925–964 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equa. 236, 407–459 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Cavalcanti, M.M., Khemmoudj, A., Medjden, M.: Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions. J. Math. Anal. Appl. 328(2), 900–930 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36, 525–551 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Feng, S.J., Feng, D.X.: Nonlinear internal damping of wave equations with variable coefficients. Acta Math. Sin. Engl. Ser. 20(6), 1057–1072 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Gulliver, R., Lasiecka, I., Littman, W., et al, The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber. In: Geometric Methods in Inverse Problems and PDE Control, IMA Vol. Math. Appl., vol. 137. Springer-Verlag, New York, pp. 73–181 (2004)

  14. Haraux, A.: Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differ. Eqs. 59(2), 145–154 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journées Équations aux Dérivées Partielles”(Plestin-les-Gréves, 2001), Univ. Nantes, Exp. No. VI, pp. 10 (2001)

  16. Joly, R., Laurent, C.: Stabilization for the semilinear wave equation with geometric control condition. Anal. PDE. 6(5), 1089–1119 (2013)

  17. Lasiecka, I., Ong, J.: Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation. Commun. Part. Diff. Eqs. 24(11–12), 2069–2107 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Lasiecka, I., Triggiani, R., Yao, P.F.: Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235(1), 13–57 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation. Differ. Integr. Equ. 6, 507–533 (1993)

    MATH  Google Scholar 

  20. Lagnese, J.: Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim. 21(1), 68–85 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Liu, K.S.: Locally distributed control and damping for the conservative system. SIAM J. Control Optim. 35(5), 1574–1590 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Liu, Y.X., Yao, P.F.: Energy decay rate of the wave equations on Riemannian manifolds with critical potential. Appl. Math. Optim. 78, 61–101 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Morawetz, C.: Time decay for nonlinear Klein–Gordon equations. Proc. R. Soc. Lond. 306A, 503–518 (1968)

    MathSciNet  Google Scholar 

  24. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complutense. 12(1), 251–283 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Nakao, M.: Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305(3), 403–417 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Nakao, M.: Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations. Math. Z. 238(4), 781–797 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Nakao, M.: Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation. Kyushu J. Math. 58(2), 373–391 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Ning, Z.H., Yang, F.Y., Zhao, X.P.: Escape metrics and its applications. arXiv:1811.12668 [math.AP]

  29. Rammaha, M.A., Strei, T.A.: Global existence and nonexistence for nonlinear wave equations with damping and source terms. Trans. Am. Math. Soc. 354(9), 3621–3637 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Rauch, J., Taylor, M.: Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)

    MathSciNet  MATH  Google Scholar 

  31. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Slemrod, M.: Weak asymptotic decay via a related invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. R. Soc. Edinb. Sect. A 113(1–2), 87–97 (1989)

    MATH  Google Scholar 

  33. Todorova, G.: Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. Nonlinear Anal. Ser. A 41(7–8), 891–905 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Todorova, G., Yordanov, B.: The energy decay problem for wave equations with nonlinear dissipative terms in \(\mathbb{R}^n\). Indiana Univ. Math. J. 56(1), 389–416 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Eqs. 174(2), 464–489 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Tcheugoué Tébou, L.R.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Eqs. 145(2), 502–524 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Yau, S.T., Schoen, R.: Lectures on Differential Geometry, International Press, Boston (2010)

  38. Yao, P.F.: Modeling and control in vibrational and structural dynamics. CRC Press, Boca Raton, FL (2011)

    MATH  Google Scholar 

  39. Yao, P.F.: On the observability inequalities for the exact controllability of the wave equation with variable coefficients. SIAM J. Control Optim. 37(6), 1568–1599 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Yao, P.F.: Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation. Chin. Ann. Math. 31B(1), 59–70 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Yao, P.F.: Observability Inequalities for the Euler–Bernoulli Plate with Variable Coefficients. Contemporary Mathematics, vol. 268, pp. 383–406. A. M. S., Providence, RI (2000)

    MATH  Google Scholar 

  42. Yao, P.F.: Boundary controllability for the quasilinear wave equation. Appl. Math. Optim. 61, 191–233 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Yao, P.F.: Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differ. Eqs. 241(1), 62–93 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Yao, P.F., Liu, Y.X., Li, J.: Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations. J. Syst. Sci. Complex 29(3), 657–680 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Zuazua, E.: Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1992)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Z.F., Yao, P.F.: Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks. SIAM J. Control Optim. 47(4), 2044–2077 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee and editor for their very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China under Grant No. 61573342 the Key Research Program of Frontier Sciences, Chinese Academy of Sciences, No. QYZDJ-SSW-SYS011 and the Fundamental Research Funds for the Central Universities (NO.BLX201924).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ning, ZH. & Yang, F. Exponential Stabilization of the Wave Equation on Hyperbolic Spaces with Nonlinear Locally Distributed Damping. Appl Math Optim 84, 3437–3449 (2021). https://doi.org/10.1007/s00245-021-09751-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09751-1

Keywords

Mathematics Subject Classification

Navigation