Skip to main content
Log in

Mesoscale Approximation of the Electromagnetic Fields

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The point-interaction approximation (or the Foldy–Lax approximation) of the electromagnetic fields generated by a cluster of small-scaled inhomogeneities is derived in the mesoscale (i.e., mesoscopic scale) regime, that is, when the minimum distance \(\varvec{\delta }\) between the particles is proportional to their maximum diameter \({\varvec{a}}\) in the form \(\varvec{\delta }={\varvec{c}}_r \, {\varvec{a}}\) with a positive constant \({\varvec{c}}_r\) that we call the dilution parameter. The small particles are modeled by anisotropic and variable electric permittivities and/or magnetic permeabilities with possibly complex values. We provide the dominating field (the so-called Foldy–Lax field) with explicit error estimates in terms of the dilution parameter \({\varvec{c}}_r\) uniformly in terms of the distribution of these inhomogeneities. Such approximations are key steps in different research areas as imaging and material sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. That means we will use the balls \(B({\varvec{z}}_m,{\varvec{a}}/2)\) to locate \(D_m\), being \([d(D_m, D_j)]^{-q}\equiv [\varvec{\delta }_{ij}]^{-q}=[d(B({\varvec{z}}_m,{\varvec{a}}/2),B({\varvec{z}}_j,{\varvec{a}}/2))]^{-q}\) for any integer q.

  2. Recall that for a given matrix B we have \(B e_j\cdot e_i=(B)_{ij}\).

  3. Due to the fact that \(H\times H=E\times E=0\).

  4. The constant \(Cst_{\mathfrak {I}{\varepsilon }_r}>0\) is the one that guaranties the definite positiveness.

  5. As \(H={({\mu }_r)^{-1}}{\text {curl}}E/{ik}=0\) in D.

  6. By \((B/_{D_m})_{\{B={\varepsilon }_r,{\mu }_r\}}\) we mean the restriction of B to \(D_m.\)

  7. The continuity of the normal trace of \({\mathcal {N}}_{D,V}^{i\alpha ,{{\varvec{{\mathcal {C}}}}_{{B}}}}\) across \(\partial D\) is due the facts that the operator \(\nu \times \nabla \) is an isomorphism from \({{\mathbb {H}}^{{s}}}{(\partial D)}\setminus {\mathbb {R}}\) to \({{\mathbb {H}}^{{s-1}}}{(\partial D)}\setminus {\mathbb {R}}\) (see [25]), and that \({\text {div}}{\mathcal {S}}_{D}^{i\alpha ,{{\varvec{{\mathcal {C}}}}_{{B}}}}(\cdot )\) has a continuous Dirichlet trace.

  8. Obviously \(\mathfrak {R}\int _{\partial B_R}\nu \times {\mathcal {N}}_{D,V}^{i\alpha ,{{\varvec{{\mathcal {C}}}}_{{B}}}}\cdot {\text {curl}}\overline{{\mathcal {N}}_{D,V}^{i\alpha ,{{\varvec{{\mathcal {C}}}}_{{B}}}}}{\mathrm{d}}s\longrightarrow 0\), as R grows, due to the exponential decay of the kernel for \(\alpha >0\).

  9. We have considered \(|k|>1.\)

  10. Notice that \(D_m\subset B({\varvec{z}}_m,\frac{{\varvec{a}}}{2})\subset B(y,{\varvec{a}})\) whenever \(y\in D_m\) and \({\chi }_{B(0,{\varvec{a}})}(x-y)={\chi }_{B(y,{\varvec{a}})}(x).\)

  11. Assuming that \(|k|{\varvec{a}}\le 1.\)

  12. Here we re-scaled the variables of integration.

  13. By \([\otimes x]^p\) we mean the p-times repeated tensor product of x.

  14. Being the segment \([{\varvec{z}}_j,{\varvec{z}}_l]\) orthogonal to \([{\varvec{z}}_m,{\varvec{z}}_l].\) (Fig. 2)

References

  1. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Ammari, H., Challa, D.P., Choudhury, A.P., Sini, M.: The point-interaction approximation for the fields generated by contrasted bubbles at arbitrary fixed frequencies. J. Differ. Equ. 267(4), 2104–2191 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ammari, H., Challa, D.P., Choudhury, A.P., Sini, M.: The equivalent media generated by bubbles of high contrasts: volumetric metamaterials and metasurfaces. Multiscale Model. Simul. 18(1), 240–293 (2020)

    Article  MathSciNet  Google Scholar 

  4. Ammari, H., Kang, H.: Polarization and Moment Tensors. Applied Mathematical Sciences. Springer, Berlin (2007)

    Google Scholar 

  5. Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomogeneities. Journal de Mathématiques Pures et Appliquées 82(7), 749–842 (2003)

    Article  MathSciNet  Google Scholar 

  6. Ammari, H., Li, B., Zou, J.: Mathematical analysis of electromagnetic plasmonic metasurfaces. Multiscale Model. Simul. 18(2), 758–797 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, vol. 374. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  8. Berezin, F.A., Faddeev, L.D.: Remark on the Schrödinger equation with singular potential. Dokl. Akad. Nauk SSSR, 157(5), 1069–1072 (1964)

  9. Bouzekri, A., Sini, M.: The Foldy–Lax approximation for the full electromagnetic scattering by small conductive bodies of arbitrary shapes. Multiscale Model. Simul. 17(1), 344–398 (2019)

    Article  MathSciNet  Google Scholar 

  10. Challa, D.P., Sini, M.: On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes. Multiscale Model. Simul. 12(1), 55–108 (2014)

    Article  MathSciNet  Google Scholar 

  11. Challa, D.P., Sini, M.: The Foldy–Lax approximation of the scattered waves by many small bodies for the Lamé system. Math. Nachr. 288(16), 1834–1872 (2015)

    Article  MathSciNet  Google Scholar 

  12. Challa, D.P., Sini, M.: Multiscale analysis of the acoustic scattering by many scatterers of impedance type. Zeitschrift für angewandte Mathematik und Physik 67(3), 58 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  14. Dassios, G., Kleinman et al: Low Frequency Scattering. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  15. Eller, M.M., Yamamoto, M.: A Carleman inequality for the stationary anisotropic Maxwell system. Journal de mathématiques pures et appliquées 86(6), 449–462 (2006)

    Article  MathSciNet  Google Scholar 

  16. Foldy, L.L.: The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys. Rev. 67(3–4), 107 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  18. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (2012)

    Google Scholar 

  19. Kim, E.J., Kang, H., Kim, K.: Anisotropic polarization tensors and detection of an anisotropic inclusion. SIAM J. Appl. Math. 63(4), 1276–1291 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kirsch, A., Lechleiter, A.: The operator equations of Lippmann–Schwinger type for acoustic and electromagnetic scattering problems in L 2. Appl. Anal. 88(6), 807–830 (2009)

    Article  MathSciNet  Google Scholar 

  21. Mantile, A., Posilicano, A., Sini, M.: Limiting absorption principle, generalized eigenfunction expansions and scattering matrix for Laplace operators with boundary conditions on hypersurfaces. J. Spectr. Theory 8, 1443–1486 (2018)

  22. Mantile, A., Posilicano, A., Sini, M.: Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces. J. Differ. Equ. 261(1), 1–55 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Maz’ya, V., Movchan, A., Nieves, M., et al.: Green’s Kernels and Meso-Scale Approximations in Perforated Domains, vol. 2077. Springer, Berlin (2013)

    Book  Google Scholar 

  24. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330(3), 377–445 (1908)

    Article  Google Scholar 

  25. Mitrea, D., Mitrea, M., Pipher, J.: Vector potential theory on nonsmooth domains in \(R^3\) and applications to electromagnetic scattering. J. Fourier Anal. Appl. 3(2), 131–192 (1996)

    Article  Google Scholar 

  26. Nguyen, T., Wang, J.-N.: Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media. Proc. Am. Math. Soc. 140(2), 595–605 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ramm, A.G.: Wave Scattering by Small Bodies of Arbitrary Shapes. Springer, Berlin (2005)

    Book  Google Scholar 

  28. Ramm, A.G.: Scattering of electromagnetic waves by many small perfectly conducting or impedance bodies. J. Math. Phys. 56(9), 091901 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yu, S., Ammari, H.: Hybridization of singular plasmons via transformation optics. Proc. Natl. Acad. Sci. 116(28), 13785–13790 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Sini.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Bouzekri: This author thanks the General Directorate of Scientific Research and Technological Development (DGRSDT/MESRS-Algeria) for its financial support.

M. Sini: This author is partially supported by the Austrian Science Fund (FWF): P28971-N32.

Appendix

Appendix

1.1 Green Function Approximations

A simple application of mean value theorem gives

$$\begin{aligned} \begin{aligned} \bigl (\Phi _k(x,y)-\Phi _k({\varvec{z}}_m,y)\bigr )&=\int _{0}^{1}\nabla \Phi _k(tx+(1-t) {\varvec{z}}_m,y){\mathrm{d}}t\circ (x-{\varvec{z}}_m)\\&= O\left( \frac{1}{\varvec{\delta }_{mj}}\left( \frac{1}{\varvec{\delta }_{mj}}+|k|\right) {\varvec{a}}\right) ,\\ \nabla \bigl (\Phi _k(x,y)-\Phi _k({\varvec{z}}_m,y)\bigr )&=\int _{0}^{1}D^2\Phi _k(tx+(1-t) {\varvec{z}}_m,y){\mathrm{d}}t\circ (x-{\varvec{z}}_m)\\&=O\left( \frac{1}{\varvec{\delta }_{mj}}\left( \frac{1}{\varvec{\delta }_{mj}}+|k|\right) ^2{\varvec{a}}\right) ,\\ \nabla \nabla \left( \Phi _k(x,y)-\Phi _k({\varvec{z}}_m,y)\right)&= \int _{0}^{1}D^3\Phi _k(tx+(1-t){\varvec{z}}_m,y){\mathrm{d}}t\circ (x-{\varvec{z}}_m)\\&= O\left( \frac{1}{\varvec{\delta }_{mj}}\left( \frac{1}{\varvec{\delta }_{mj}}+|k|\right) ^3{\varvec{a}}\right) . \end{aligned} \end{aligned}$$
(A.1)

whenever \(y\in D_j\) and \( j\ne m.\) We also have the following first-order expansion of the Green’s functionFootnote 13

$$\begin{aligned}{}[\Phi _k-\Phi _{i\alpha }](x)&=\frac{(ik-\alpha )}{4\pi }\int _{[0,1]} e^{\bigl ((ik)t-(1-t)\alpha \bigr )|x|}~{\mathrm{d}}t, \end{aligned}$$
(A.2)
$$\begin{aligned} \nabla [\Phi _k-\Phi _{i\alpha }](x)&= \Bigr [\frac{(ik-\alpha )}{4\pi } \int _{[0,1]}{e^{(ikt-(1-t)\alpha )|x|}}~\bigl (ikt+(1-t)\alpha \bigr ){\mathrm{d}}t\Bigl ]~\frac{x}{|x|}, \end{aligned}$$
(A.3)
$$\begin{aligned}{}[\otimes \nabla ]^2[\Phi _k-\Phi _{i\alpha }](x)&= \int _{0}^1\frac{e^{(ikt-(1-t)\alpha )|x|} \bigl (ikt+(1-t)\alpha \bigr )}{4\pi ~(ik-\alpha )^{-1} |x|}\nonumber \\&\quad \left[ I+\left( ikt+(1-t)\alpha -\frac{1}{|x|} \right) \frac{[\otimes x]^2}{|x|}\right] {\mathrm{d}}t. \end{aligned}$$
(A.4)

1.2 Counting Lemma

Lemma A.1

For any non-negative function g, we have

$$\begin{aligned} \sum _{{j\ge 1},{j\ne m}}^{{{\aleph }}} g(\varvec{\delta }_{mj})\le 48\sum _{{\mathop {O\le i\le k\le l}\limits ^{1\le l\le {{\aleph }}}}} g\Bigl (\bigl [\bigl (l^2+k^2+i^2\Bigr )^\frac{1}{2}({\varvec{c}}_r+1)-1\bigr ]{\varvec{a}}\Bigr ), \end{aligned}$$
(A.5)

and for any non-negative sequence \((\alpha _j)_{j=1}^{{{\aleph }}}\), we have

$$\begin{aligned} \sum _{m=1}^{{{\aleph }}} \left( \sum _{{\mathop {j\ne m}\limits ^{j\ge 1}} }^{{{\aleph }}}\frac{\alpha _j}{\varvec{\delta }_{mj}^q}\right) ^2\le \left( \frac{{c_0}}{\varvec{\delta }^q}\sum _{l=1}^{{{\aleph }}^\frac{1}{3}}l^{2-q}\right) ^2 \sum _{j=1}^{{{\aleph }}}\alpha _j^2. \end{aligned}$$
(A.6)

where \(c_0\) is a positive number.

Proof

We first address the following observation. The worst case (i.e., the maximum number of inhomogeneities around a fixed one, let’s say \({\varvec{z}}_m\)) is described by the tessellation of a sphere of diameter \(n\varvec{\delta },\,n\in {\mathbb {N}},\) by equilateral triangles of side \(\varvec{\delta }+{\varvec{a}},\) where the vertices stand for the position of the inhomogeneities. Therefore, we will only consider a periodically distributed of these inhomogeneities, since the results will differ by a multiplicative constant. The reason is that there exists a bounded homeomorphism, which is a radial projection, between the two configurations. To justify this last statement, let CU(0, r) be a cube of fixed side r centered at the origin whose sides are parallel to the coordinates axis.

For \(y=(y_1, y_2, y_3)\), we set \(\tau _r(y):=\frac{r}{2|y|_{\infty }}y\) where \(|y|_{\infty }:=\sup _{j=1,2,3}|y_j|\). Let B(0, r/2) be the ball of center the origin and radius r/2. It is obvious that \(B(0,r/2)\subset CU(0,r)\). In addition, for any y we have \(\tau _r(y)\in \partial CU(0,r).\) Indeed, as \(\partial CU(0,r)\) is the union of six truncated plans, namely \(\{x\in {\mathbb {R}}^3;\,\, x_i=\pm r/2, |x_j|_{j\ne i}\le r/2\}_{i=1,2,3},\) and \(|y|_{\infty }=y_i,\) for some \(i\in \{1,2,3\}\), then putting

$$\begin{aligned} x_i:=\frac{r}{2}\frac{y_i}{|y|_\infty }=\pm r/2,\,\,x_j:=\frac{r}{2}\frac{y_j}{|y|_\infty } \text { for }j\ne i \end{aligned}$$

guaranties us that \(x:=\tau _r(y)\in \cup _{i=1}^3\{x\in {\mathbb {R}}^3 ;\,\, x_i=\pm r/2, |x_j|_{j\ne i}\le r/2\}\).

Let us prove that \(\tau : \partial B(0,r/2) \rightarrow \partial CU(0,r)\) is a bounded homeomorphism.

To show the injectivity of \(\tau \), let \(y^1, y^2\) be any two points such that \({y^1}/{|y^1|_{\infty }}={y^2}/{|y^2|_{\infty }}\) then we have, for \(i=1,2,3,\) \({y^1_i}/{|y^1|_\infty }={y^2_i}/{{|y^2|_\infty }},\) squaring and summing the previous identity gives \(|y^2|_\infty /{|y^1|_\infty }=1 \) which guaranties the injectivity \(\tau _r.\)

Concerning the surjectivity, it is sufficient to set, for x in the truncated plan \(P_i^\pm :=\{x\in {\mathbb {R}}^3 ;\,\, x_i=\pm r/2, |x_j|_{j\ne i}\le r/2\}\),

$$\begin{aligned} y:=\pi (x):=\frac{r}{2|x|_2}x. \end{aligned}$$

Obviously \(y \in B(0,r/2)\). Let us fix \(x \in P^+_i\) for a certain i. As \(|y|_\infty =r/2 |x_i|/|x|_2=r^2/(4|x|_2),\) we have

$$\begin{aligned} \tau (\pi (x))=\tau (y)=\frac{r}{2}\frac{y}{|y|_\infty }=x. \end{aligned}$$

Similar reasoning gives us \(\pi \tau (y)=y\) for any \(y\in \partial B(0,r/2),\) to conclude \(\tau ^{-1}=\pi .\)

It remains to show that \(\tau \) and \(\tau ^{-1}\) are continuous. For this purpose, noticing that for any \(y \in \partial B(0,r/2)\) we have \(|y|_\infty \ge r/2\sqrt{3}\), we obtain

$$\begin{aligned} |\tau (y^1)-\tau (y^2)|_2&= \frac{r}{2}|\frac{y^1}{|y^1|_\infty }-\frac{y^2}{|y^2|_\infty }|_2\le \frac{r}{2}|\frac{|y^2|_\infty y^1-|y^1|_\infty y^2}{|y^1|_\infty |y^2|_\infty }|_2 \\&\le 6/r\Bigl (|y^2|_\infty | y^1- y^2|_2+|y^2|_2| y^1- y^2|_\infty \Bigr )\\&\le 6/r\Bigl (\frac{r}{2}| y^1- y^2|_2+\frac{r}{2}| y^1- y^2|_2\Bigr ) \end{aligned}$$

which is \(|\tau (y^1)-\tau (y^2)|_2\le 3| y^1- y^2|_2.\) With similar computations, for \(x^1,x^2\in \partial CU(0,r),\) we get

$$\begin{aligned} |\tau ^{-1} (x^1)-\tau ^{-1}(x^2)|_2=|\pi (x^1)-\pi (x^2)|_2=\le \sqrt{3}| x^1- x^2|_2. \end{aligned}$$

Hence, \(\tau : \partial B(0,r/2) \rightarrow \partial CU(0,r)\) is a bounded homeomorphism.

Now let \({\varvec{z}}_i, {\varvec{z}}_j\) be in \(\partial B({\varvec{z}}_m,r)\) and set \({\varvec{z}}_j^{\prime }=\tau ({\varvec{z}}_j)\) and \({\varvec{z}}_i^{\prime }=\tau ({\varvec{z}}_i).\) Hence, as we have the continuity of \(\tau ^{-1},\)

$$\begin{aligned} d({\varvec{z}}_j,{\varvec{z}}_i)= & {} |\tau ^{-1}(\tau ({\varvec{z}}_j))-\tau ^{-1}(\tau ({\varvec{z}}_i))|_ 2\le \sqrt{3}|\tau ({\varvec{z}}_j)-\tau ({\varvec{z}}_i)|_2 =\sqrt{3}d({\varvec{z}}_j^{\prime },{\varvec{z}}_i^{\prime })\\\le & {} 3\sqrt{3} d({\varvec{z}}_j,{\varvec{z}}_i). \end{aligned}$$
Fig. 1
figure 1

Disposition of the faces \(F_l\)

Fig. 2
figure 2

Counting on the square \(SQ_k\)

From a given position \({\varvec{z}}_m,\) we split the space into equidistant cubes \((CU_l)\), centered at \({\varvec{z}}_m\), such that each of its faces support some of the \(({\varvec{z}}_j)_{{j\ge 1,\,}{j\ne m}}^{{{\aleph }}}\) with \(d(CU_l,CU_{l+1})=\varvec{\delta }+{\varvec{a}}\).

There is at most \(O(\aleph ^\frac{1}{3})\) of such cubes. Indeed, let p denote the number of cubes, for a given \(l\in \{1,\ldots ,p\},\) we have

$$\begin{aligned} d(CU_l,{\varvec{z}}_m)=l(\varvec{\delta }+{\varvec{a}}). \end{aligned}$$

As there are six faces on \(CU_l,\) we also have a total surface of

$$\begin{aligned} |\partial (CU_l)|:=6(2l(\varvec{\delta }+ {\varvec{a}}))^2. \end{aligned}$$

Now, on the surface of a given cube \(CU_l,\) each inhomogeneity occupies a total surface of

$$\begin{aligned} S(B({\varvec{z}}_m,{\varvec{a}}+\varvec{\delta })):=|\partial (CU_l)\cap B({\varvec{z}}_m,{\varvec{a}}+\varvec{\delta })|=\pi ({\varvec{a}}+\varvec{\delta })^2 \end{aligned}$$

hence, each cube may contain \( {6 (2l(\varvec{\delta }+{\varvec{a}}))^2}/{\pi ({\varvec{a}}+\varvec{\delta })^2}={24l^2}/{\pi }\) inhomogeneities on its surface. Then,

$$\begin{aligned} ({{\aleph }}-1)=\sum _{{\varvec{z}}_j, j\ne m }1=\sum _{l=1}^p \text {cardinal}\{{\varvec{z}}_j\in CU_l\}\ge \frac{24}{\pi }\sum _{l=1}^p l^2\ge p(p + 1)(2p + 1) \end{aligned}$$

which means that p is at most of the order \({{\aleph }}^{1/3}\).

Now, if \((F_l)_{l=1}^p\) stands, respectively, for one of the faces of \((CU_l)_{l=1}^p,\) chosen to have the same orientation (i.e.,  \(d(F_{l\pm 1},F_{l})={\varvec{a}}+\varvec{\delta }\) (see Fig. 1), then, for \(z_l\) standing for the orthogonal projection of \({\varvec{z}}_m\) on \(F_l,\) the distance from a point \({\varvec{z}}_j\in F_l\) to \({\varvec{z}}_m\) isFootnote 14

$$\begin{aligned} \begin{aligned} d({\varvec{z}}_m,{\varvec{z}}_j)&=\sqrt{d({\varvec{z}}_m,F_l)^2+d({\varvec{z}}_j,{\varvec{z}}_l)^2},\\&\quad \text { with } d({\varvec{z}}_m,F_l)=d({\varvec{z}}_m, {\varvec{z}}_l)=l(\varvec{\delta }+{\varvec{a}}). \end{aligned} \end{aligned}$$
(A.7)

Analogously, we split each face \(F_l\) with concentric squares \((SQ_k)_{k=1}^l\), centered at \({\varvec{z}}_l\) (the orthogonal projection of \({\varvec{z}}_m\) on \(F_l\)). There is 4 or at most 8 locations that are equidistant from a given square \(SQ_k\) to \({\varvec{z}}_l\) which corresponds to the intersections of a circle and a square sharing the same center, see Fig 2. Similarly, for a point \(z_p\in SQ_k\), we get, with \(z_k\) standing for the orthogonal projection of \({\varvec{z}}_l\) on one side of \(SQ_k,\)

$$\begin{aligned} \begin{aligned} d({\varvec{z}}_p,{\varvec{z}}_l)&=\sqrt{(d({\varvec{z}}_p,{\varvec{z}}_k)^2+d(SQ_k,{\varvec{z}}_l)^2)}, \text { with } d(SQ_k,{\varvec{z}}_l)=k(\varvec{\delta }+{\varvec{a}}).\quad \end{aligned}\nonumber \\ \end{aligned}$$
(A.8)

As

$$\begin{aligned} d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}})=d({\varvec{z}}_m,{\varvec{z}}_j)-{\varvec{a}}, \end{aligned}$$

and for a non-negative function g, with (A.7), we get

$$\begin{aligned} \sum _{j(\ne m)=1}^{{{\aleph }}} g\bigl (d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}}) \Bigr )&=\sum _{j(\ne m)=1}^{{{\aleph }}} g\bigl (d({\varvec{z}}_m,{\varvec{z}}_j)-{\varvec{a}}\bigr )\\&= \sum _{l=1}^{{{\aleph }}^\frac{1}{3}} 6\sum _{{\varvec{z}}_j\in F_l}g\bigl (d({\varvec{z}}_j,{\varvec{z}}_m)-{\varvec{a}}\bigr ),\\&=6\sum _{l=1}^{{{\aleph }}^\frac{1}{3}}\sum _{z_j\in F_l}g\Bigl (\bigl (d(F_l,{\varvec{z}}_m)^2+d({\varvec{z}}_l,{\varvec{z}}_j)^2\Bigr )^\frac{1}{2}-{\varvec{a}}\Bigr )\\&\le 6\sum _{l=1}^{{{\aleph }}^\frac{1}{3}}\sum _{k=1}^l8\sum _{z_p\in SQ_k} g\Bigl (\bigl (l^2(\varvec{\delta }+{\varvec{a}})^2+d({\varvec{z}}_l,{\varvec{z}}_p)^2\Bigr )^\frac{1}{2}-{\varvec{a}}\Bigr ), \end{aligned}$$

with (A.8), we get

$$\begin{aligned}&\sum _{j(\ne m)=1}^{{{\aleph }}} g\bigl (d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}})\Bigr )\\&\quad \le 6\times 8\sum _{l=1}^{{{\aleph }}^\frac{1}{3}}\sum _{k=1}^l\sum _{p=1}^k g\Bigl (\bigl (l^2(\varvec{\delta }+{\varvec{a}})^2+d({\varvec{z}}_l,SQ_k)^2+d({\varvec{z}}_p,{\varvec{z}}_k)^2\Bigr )^\frac{1}{2}-{\varvec{a}}\Bigr ),\\&\quad \le 6\times 8\sum _{l\ge 1}^{{{\aleph }}^\frac{1}{3}}\sum _{k=1}^l\sum _{p=1}^k g\Bigl (\bigl (l^2(\varvec{\delta }+{\varvec{a}})^2+k^2(\varvec{\delta }+{\varvec{a}})^2+p^2(\varvec{\delta }+{\varvec{a}})^2\Bigr )^\frac{1}{2}-{\varvec{a}}\Bigr ), \end{aligned}$$

which guaranties that

$$\begin{aligned} \sum _{j(\ne m)=1}^{{{\aleph }}} g\bigl (d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}})\bigr ) \le 6\times 8\sum _{{\mathop {1\le p\le k\le l}\limits ^{1\le l\le {{\aleph }}^\frac{1}{3}}}} g\Bigl (\bigl [\bigl (l^2+k^2+p^2\Bigr )^\frac{1}{2}({\varvec{c}}_r+1)-1\bigr ]{\varvec{a}}\Bigr ). \end{aligned}$$
(A.9)

To derive (A.6), we start from (A.9), with \(g(x)={1/x^q}\), and get

$$\begin{aligned} \sum _{j(\ne m)=1}^{{{\aleph }}} \frac{1}{\bigl (d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}})\bigr )^q}&\le 6\times 8\sum _{{\mathop {1\le p\le k\le l}\limits ^{1\le l\le {{\aleph }}^\frac{1}{3}}}} \frac{1}{\Bigl (\bigl [\bigl (l^2+k^2+p^2\Bigr )^\frac{1}{2}({\varvec{c}}_r+1)-1\bigr ]{\varvec{a}}\Bigr )^q},\\&\le 6\times 8\sum _{{1\le l\le {{\aleph }}^\frac{1}{3}}}\sum _{k=1}^l k \frac{1}{\Bigl (\bigl [\bigl (l^2+k^2\Bigr )^\frac{1}{2}({\varvec{c}}_r+1)-1\bigr ]{\varvec{a}}\Bigr )^q},\\&\le \frac{6\times 8}{{\varvec{a}}^q}\sum _{{1\le l\le {{\aleph }}^\frac{1}{3}}} l^2 \frac{1}{\Bigl (\bigl [l({\varvec{c}}_r+1)-1\bigr ]\Bigr )^q}, \end{aligned}$$

hence

$$\begin{aligned} \sum _{j(\ne m)=1}^{{{\aleph }}}\frac{1}{\varvec{\delta }_{mj}^q}\le \sum _{j(\ne m)=1}^{{{\aleph }}} \frac{1}{\bigl (d(B_{{\varvec{z}}_m}^{{\varvec{a}}}, B_{{\varvec{z}}_j}^{{\varvec{a}}})\bigr )^q}\le \frac{c_0}{({\varvec{c}}_r{\varvec{a}})^q}\sum _{{1\le l\le {{\aleph }}^\frac{1}{3}}} l^2 \frac{1}{l^q}. \end{aligned}$$
(A.10)

Using (A.10) and Hölder’s inequality for the inner sum, we obtain

$$\begin{aligned} \sum _{m=1}^{{{\aleph }}} \Bigl (\sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}}\frac{\alpha _j}{\varvec{\delta }_{mj}^q}\Bigr )^2&\le \sum _{m=1}^{{{\aleph }}} \Biggl ( \Biggl [\sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}} \Bigl (\frac{\alpha _j}{\varvec{\delta }_{mj}^\frac{q}{2}}\Bigr )^2\Biggr ]^\frac{1}{2} \Biggl [\sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}}\Bigl (\frac{1}{\varvec{\delta }_{mj}^\frac{q}{2}}\Bigr )^2\Biggr ]^\frac{1}{2}\Biggr )^2,\\&\le \sum _{m=1}^{{{\aleph }}} \Biggl ( \sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}}\Bigl (\frac{\alpha ^2_j}{\varvec{\delta }_{mj}^q}\Bigr )~\sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}}\frac{1}{\varvec{\delta }_{mj}^q}\Biggr ),\\&\le \frac{c_0}{\varvec{\delta }^q}\sum _{l= 1}^{{{\aleph }}^\frac{1}{3}}l^{(2-q)} \sum _{m=1}^{{{\aleph }}} \sum _{{\mathop {j\ne m}\limits ^{j\ge 1}}}^{{{\aleph }}}\frac{\alpha ^2_j}{\varvec{\delta }_{mj}^q}. \end{aligned}$$

The proof ends with

$$\begin{aligned} \sum _{m=1}^{{{\aleph }}} \sum _{{j\ge 1},{m\ne j}}^{{{\aleph }}}\frac{\alpha ^2_j}{\varvec{\delta }_{mj}^q} =\sum _{j=1}^{{{\aleph }}} \alpha ^2_j\sum _{{\mathop {m\ne j}\limits ^{m\ge 1}} }\frac{1}{\varvec{\delta }_{mj}^q}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzekri, A., Sini, M. Mesoscale Approximation of the Electromagnetic Fields. Ann. Henri Poincaré 22, 1979–2028 (2021). https://doi.org/10.1007/s00023-021-01021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01021-8

Keywords

Mathematics Subject Classification

Navigation