Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hot carrier photovoltaics in van der Waals heterostructures

An Author Correction to this article was published on 31 August 2021

Abstract

Successfully designing an ideal solar cell requires an understanding of the fundamental physics of photoexcited hot carriers (HCs) and the underlying mechanism of unique photovoltaic performance. Harnessing photoexcited HCs offers the potential to exceed the thermodynamic limit of power conversion efficiency, although major loss channels employing ultrafast thermalization of HCs severely restrict their utilization in conventional bulk-absorber-based solar cells. Spatially confined semiconductors, especially 2D van der Waals (vdW) materials, offer several advantages, such as strong Coulomb interaction, high exciton binding energy, strong carrier–carrier scattering and weak carrier–phonon coupling, resulting in slow HC cooling and restricted loss channels. This Review provides a detailed mechanistic understanding of the HC cooling dynamics in confined vdW layered materials for efficiently utilizing HCs and discusses the role of carrier multiplication in designing a solar cell with the power conversion efficiency exceeding the Shockley–Queisser limit. Additionally, we analyse the major energy loss channels that limit the efficiency of a conventional solar cell, as well as the promises held by the 2D vdW heterostructures for an efficient HC solar cell. Furthermore, we highlight the challenges and opportunities involved in successfully utilizing HCs in practical solar cells with efficiencies beyond the thermodynamic limit.

Key points

  • Photogenerated hot carriers can be harnessed in spatially confined photovoltaic materials (2D van der Waals heterostructures), owing to slow hot carrier cooling and restricted loss channels, resulting in power conversion efficiency beyond the Shockley–Queisser limit.

  • Weak optical absorbance of graphene can be compensated by integrating with 2D van der Waals layered semiconductors yielding relatively high absorbance. Subsequently, the enhanced photocarrier density invokes the hot-phonon bottleneck effect, leading to prolonged hot carrier cooling in graphene, which results in the synergistic hot-carrier-driven photovoltaic performance.

  • Unlike conventional bulk heterostructures, direct interlayer hot carrier transfer on the ultrafast timescale can be efficient in van der Waals heterostructures without phonon emission due to momentum conservation at the K-point.

  • In graphene-based 2D van der Waals heterostructures, graphene can serve as both the injector and the collector of quasi-thermalized hot carriers with high quantum efficiency.

  • Both 2D van der Waals layered materials and perovskite nanostructures demonstrate high carrier multiplication conversion efficiency. Moreover, 2D van der Waals heterostructures also demonstrate highly efficient interlayer carrier multiplication near room temperature.

  • van der Waals heterostructure stacking with a hot carrier absorber material, perovskite nanostructures, may offer synergistic hot carrier and carrier multiplication effects, which lead to the enhanced solar cell performance (maximum open-circuit voltage (\({V}_{{\rm{OC}}}^{{\rm{HC}}}\)) and short-circuit current (\({I}_{{\rm{SC}}}^{{\rm{CM}}}\))).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of a next-generation solar cell beyond the Shockley–Queisser limit.
Fig. 2: Hot carrier dynamics in semiconductors and graphene.
Fig. 3: Hot carrier extraction in the graphene–semiconductor heterointerface.
Fig. 4: Gate-tunable photovoltaic characteristics of an atomically thin p–n junction.
Fig. 5: Hot-carrier-driven interlayer current and carrier multiplication in a 2D semiconductor heterojunction photocell.
Fig. 6: Light-induced charge separation and ultrafast formation of interlayer hot excitons.
Fig. 7: Hot carrier thermalization in perovskite films.
Fig. 8: Carrier multiplication and its impact on the solar cell performance, together with the hot carrier effect.

Similar content being viewed by others

References

  1. Nelson, C. A., Monahan, N. R. & Zhu, X. Y. Exceeding the Shockley–Queisser limit in solar energy conversion. Energy Environ. Sci. 6, 3508–3519 (2013).

    Article  Google Scholar 

  2. Green, M. Third generation photovoltaics (eds Kamiya, T., Monemar, B., Venghaus, H. & Yamamoto, Y.) (Springer, 2006).

  3. Würfel, P. & Würfel, U. Physics of Solar Cells: from Basic Principles to Advanced Concepts 3rd edn (Wiley, 2016).

  4. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  5. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 41). Prog. Photovolt. Res. Appl. 21, 1–11 (2013).

    Article  Google Scholar 

  6. Nozik, A. J. Utilizing hot electrons. Nat. Energy 3, 170–171 (2018).

    Article  ADS  Google Scholar 

  7. Nozik, A. J. Quantum dot solar cells. Phys. E Low. Dimens. Syst. Nanostruct. 14, 115–120 (2002).

    Article  ADS  Google Scholar 

  8. Brown, G. F. & Wu, J. Third generation photovoltaics. Laser Photonics Rev. 3, 394–405 (2009).

    Article  ADS  Google Scholar 

  9. Li, M., Fu, J., Xu, Q. & Sum, T. C. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, 1802486 (2019).

    Article  Google Scholar 

  10. Conibeer, G. Third-generation photovoltaics. Mater. Today 10, 42–50 (2007).

    Article  Google Scholar 

  11. Luque, A. & Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).

    Article  ADS  Google Scholar 

  12. Tauc, J. Electron impact ionization in semiconductors. J. Phys. Chem. Solids 8, 219–223 (1959).

    Article  ADS  Google Scholar 

  13. Robbins, D. J. Aspects of the theory of impact ionization in semiconductors (I). Phys. Status Solidi 97, 9–50 (1980).

    Article  Google Scholar 

  14. McKay, K. G. & McAfee, K. B. Electron multiplication in silicon and germanium. Phys. Rev. 91, 1079–1084 (1953).

    Article  ADS  Google Scholar 

  15. Beard, M. C., Luther, J. M., Semonin, O. E. & Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 46, 1252–1260 (2013).

    Article  Google Scholar 

  16. Hanna, M. C., Beard, M. C. & Nozik, A. J. Effect of solar concentration on the thermodynamic power conversion efficiency of quantum-dot solar cells exhibiting multiple exciton generation. J. Phys. Chem. Lett. 3, 2857–2862 (2012).

    Article  Google Scholar 

  17. Saeed, S., de Jong, E. M. L. D., Dohnalova, K. & Gregorkiewicz, T. Efficient optical extraction of hot-carrier energy. Nat. Commun. 5, 4665 (2014).

    Article  ADS  Google Scholar 

  18. Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10, 53–59 (2016).

    Article  ADS  Google Scholar 

  19. Wen, Y.-C., Chen, C.-Y., Shen, C.-H., Gwo, S. & Sun, C.-K. Ultrafast carrier thermalization in InN. Appl. Phys. Lett. 89, 232114 (2006).

    Article  ADS  Google Scholar 

  20. Haight, R. Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275–325 (1995).

    Article  ADS  Google Scholar 

  21. Conibeer, G. J., König, D., Green, M. A. & Guillemoles, J. F. Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films 516, 6948–6953 (2008).

    Article  ADS  Google Scholar 

  22. Aerts, M. et al. Highly efficient carrier multiplication in PbS nanosheets. Nat. Commun. 5, 3789 (2014).

    Article  ADS  Google Scholar 

  23. Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nat. Photonics 6, 316–321 (2012).

    Article  ADS  Google Scholar 

  24. Kim, J.-H. et al. Carrier multiplication in van der Waals layered transition metal dichalcogenides. Nat. Commun. 10, 5488 (2019). Report of CM in 2D vdW semiconductors.

    Article  ADS  Google Scholar 

  25. Jeong, I. et al. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy 28, 380–389 (2016).

    Article  Google Scholar 

  26. Wang, X. et al. Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A 5, 1706–1712 (2017).

    Article  Google Scholar 

  27. Roose, B. et al. Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 30, 517–522 (2016).

    Article  Google Scholar 

  28. Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  Google Scholar 

  29. Conibeer, G. J. et al. Selective energy contacts for hot carrier solar cells. Thin Solid Films 516, 6968–6973 (2008).

    Article  ADS  Google Scholar 

  30. Oener, S. Z. et al. Charge carrier-selective contacts for nanowire solar cells. Nat. Commun. 9, 3248 (2018).

    Article  ADS  Google Scholar 

  31. Adler, D. & Feinleib, J. Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112–3134 (1970).

    Article  ADS  Google Scholar 

  32. Wu, Y. et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017).

    Article  Google Scholar 

  33. Rao, H. et al. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3−xClx solar cells by an effective Cl doping method. Nano Energy 27, 51–57 (2016).

    Article  Google Scholar 

  34. Zhang, H., Wang, H., Chen, W. & Jen, A. K.-Y. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017).

    Article  Google Scholar 

  35. Juarez-Perez, E. J. et al. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680–685 (2014).

    Article  Google Scholar 

  36. Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

    Article  ADS  Google Scholar 

  37. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  38. Gagliardi, A. & Abate, A. Mesoporous electron-selective contacts enhance the tolerance to interfacial ion accumulation in perovskite solar cells. ACS Energy Lett. 3, 163–169 (2018).

    Article  Google Scholar 

  39. del Corro, E. et al. Atypical exciton–phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16, 2363–2368 (2016).

    Article  ADS  Google Scholar 

  40. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  41. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  ADS  Google Scholar 

  42. Chen, H. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 7, 12512 (2016). A report of ultrafast formation of interlayer hot excitons in 2D vdW heterostructure.

    Article  ADS  Google Scholar 

  43. Saeed, S. et al. Carrier multiplication in germanium nanocrystals. Light Sci. Appl. 4, e251 (2015).

    Article  Google Scholar 

  44. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  ADS  Google Scholar 

  45. Cirloganu, C. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 5, 4148 (2014).

    Article  ADS  Google Scholar 

  46. Padilha, L. A. et al. Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods. Nano Lett. 13, 1092–1099 (2013).

    Article  ADS  Google Scholar 

  47. Midgett, A. G. et al. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbSxSe1−x alloyed quantum dots. Nano Lett. 13, 3078–3085 (2013).

    Article  ADS  Google Scholar 

  48. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  49. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325, 1367 (2009). Report of CM in carbon nanotube p-n junction photodiode.

    Article  ADS  Google Scholar 

  50. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  ADS  Google Scholar 

  51. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  ADS  Google Scholar 

  52. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  ADS  Google Scholar 

  53. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  ADS  Google Scholar 

  54. Schaller, R. D., Sykora, M., Jeong, S. & Klimov, V. I. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110, 25332–25338 (2006).

    Article  Google Scholar 

  55. Murphy, J. E. et al. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  Google Scholar 

  56. de Weerd, C. et al. Efficient carrier multiplication in CsPbI3 perovskite nanocrystals. Nat. Commun. 9, 4199 (2018).

    Article  ADS  Google Scholar 

  57. Cong, M. et al. Carrier multiplication and hot-carrier cooling dynamics in quantum-confined CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 11, 1921–1926 (2020).

    Article  Google Scholar 

  58. Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    Article  ADS  Google Scholar 

  59. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  Google Scholar 

  60. Tran, M. D. et al. Decelerated hot carrier cooling in graphene via nondissipative carrier injection from MoS2. ACS Nano 14, 13905–13912 (2020). A report of prolonged nondissipative interlayer HC transfer in a graphene–MoS2 heterostructure.

    Article  Google Scholar 

  61. Yuan, L. et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).

    Article  ADS  Google Scholar 

  62. Liu, W. et al. Approaching the collection limit in hot electron transistors with ambipolar hot carrier transport. ACS Nano 13, 14191–14197 (2019).

    Article  Google Scholar 

  63. Wang, L. et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nat. Commun. 8, 13906 (2017). Report of slow cooling and efficient extraction of C-exciton HCs in the MoS2–graphene interface.

    Article  ADS  Google Scholar 

  64. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  65. Li, M. et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8, 14350 (2017).

    Article  ADS  Google Scholar 

  66. Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    Article  ADS  Google Scholar 

  67. Conibeer, G., Nozik, A. J. & Beard, M. C. Advanced Concepts in Photovoltaics (RSC, 2014).

  68. Moliton, A. Solid-State Physics for Electronics (Wiley, 2009).

  69. Fara, L. & Yamaguchi, M. Advanced Solar Cell Materials, Technology, Modeling, and Simulation 1st edn (IGI Global, 2012).

  70. Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    Article  ADS  Google Scholar 

  71. Ridley, B. K. Electron scattering by confined LO polar phonons in a quantum well. Phys. Rev. B 39, 5282–5286 (1989).

    Article  ADS  Google Scholar 

  72. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  ADS  Google Scholar 

  73. Li, M. et al. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals. Nat. Commun. 9, 4197 (2018).

    Article  ADS  Google Scholar 

  74. Tisdale, W. A. et al. Hot-electron transfer from semiconductor nanocrystals. Science 328, 1543–1547 (2010).

    Article  ADS  Google Scholar 

  75. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  ADS  Google Scholar 

  76. Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    Article  ADS  Google Scholar 

  77. Woggon, U. et al. Ultrafast energy relaxation in quantum dots. Phys. Rev. B 54, 17681–17690 (1996).

    Article  ADS  Google Scholar 

  78. Klimov, V. I., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60, 13740–13749 (1999).

    Article  ADS  Google Scholar 

  79. Schaller, R. D. et al. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions. Phys. Rev. Lett. 95, 196401 (2005).

    Article  ADS  Google Scholar 

  80. Hendry, E. et al. Direct observation of electron-to-hole energy transfer in CdSe quantum dots. Phys. Rev. Lett. 96, 057408 (2006).

    Article  ADS  Google Scholar 

  81. Pandey, A. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    Article  ADS  Google Scholar 

  82. Miaja-Avila, L. et al. Direct mapping of hot-electron relaxation and multiplication dynamics in PbSe quantum dots. Nano Lett. 12, 1588–1591 (2012).

    Article  ADS  Google Scholar 

  83. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  ADS  Google Scholar 

  84. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  85. Winnerl, S. et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011).

    Article  ADS  Google Scholar 

  86. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  ADS  Google Scholar 

  87. Avouris, P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010).

    Article  ADS  Google Scholar 

  88. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  89. Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).

    Article  ADS  Google Scholar 

  90. Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).

    Article  ADS  Google Scholar 

  91. Chen, Y., Li, Y., Zhao, Y., Zhou, H. & Zhu, H. Highly efficient hot electron harvesting from graphene before electron-hole thermalization. Sci. Adv. 5, eaax9958 (2019). A report of ultrafast hot electron extraction before carrier thermalization in graphene heterostructures.

    Article  ADS  Google Scholar 

  92. Winzer, T. & Malić, E. Impact of Auger processes on carrier dynamics in graphene. Phys. Rev. B 85, 241404 (2012).

    Article  ADS  Google Scholar 

  93. Liu, W.-T. et al. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation. Phys. Rev. B 82, 081408 (2010).

    Article  ADS  Google Scholar 

  94. Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Article  ADS  Google Scholar 

  95. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Article  ADS  Google Scholar 

  96. Berciaud, S. et al. Electron and optical phonon temperatures in electrically biased graphene. Phys. Rev. Lett. 104, 227401 (2010).

    Article  ADS  Google Scholar 

  97. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  98. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    Article  Google Scholar 

  99. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  100. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  101. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    Article  ADS  Google Scholar 

  102. Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  ADS  Google Scholar 

  103. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  Google Scholar 

  104. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article  ADS  Google Scholar 

  105. Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015).

    Article  ADS  Google Scholar 

  106. Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    Article  ADS  Google Scholar 

  107. Williams, K. J., Nelson, C. A., Yan, X., Li, L.-S. & Zhu, X. Hot electron injection from graphene quantum dots to TiO2. ACS Nano 7, 1388–1394 (2013).

    Article  Google Scholar 

  108. Kang, M. et al. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017).

    Article  ADS  Google Scholar 

  109. Hunt, R. J., Monserrat, B., Zólyomi, V. & Drummond, N. D. Diffusion quantum Monte Carlo and GW study of the electronic properties of monolayer and bulk hexagonal boron nitride. Phys. Rev. B 101, 205115 (2020).

    Article  ADS  Google Scholar 

  110. Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

    Article  Google Scholar 

  111. Ju, L. et al. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol. 9, 348–352 (2014).

    Article  ADS  Google Scholar 

  112. Huang, L. et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett. 10, 1308–1313 (2010).

    Article  ADS  Google Scholar 

  113. Long, M. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016).

    Article  ADS  Google Scholar 

  114. Malic, E., Winzer, T., Bobkin, E. & Knorr, A. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B 84, 205406 (2011).

    Article  ADS  Google Scholar 

  115. Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016).

    Article  ADS  Google Scholar 

  116. Wen, X. et al. Ultrafast probes of electron–hole transitions between two atomic layers. Nat. Commun. 9, 1859 (2018).

    Article  ADS  Google Scholar 

  117. He, J. et al. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat. Commun. 5, 5622 (2014).

    Article  ADS  Google Scholar 

  118. Urcuyo, R., Duong, D. L., Sailer, P., Burghard, M. & Kern, K. Hot carrier extraction from multilayer graphene. Nano Lett. 16, 6761–6766 (2016). Proof of concept for HC extraction from graphene.

    Article  ADS  Google Scholar 

  119. Wang, F. & Melosh, N. A. Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices. Nat. Commun. 4, 1711 (2013).

    Article  ADS  Google Scholar 

  120. Paul, K. K., Mawlong, L. P. L. & Giri, P. K. Trion-inhibited strong excitonic emission and broadband giant photoresponsivity from chemical vapor-deposited monolayer MoS2 grown in situ on TiO2 nanostructure. ACS Appl. Mater. Interfaces 10, 42812–42825 (2018).

    Article  Google Scholar 

  121. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  ADS  Google Scholar 

  122. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  Google Scholar 

  123. Aeschlimann, S. et al. Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures. Sci. Adv. 6, eaay0761 (2020).

    Article  ADS  Google Scholar 

  124. Froehlicher, G., Lorchat, E. & Berciaud, S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Phys. Rev. X 8, 011007 (2018).

    Google Scholar 

  125. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  126. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). This paper reports on atomically thin p–n junction photovoltaic devices.

    Article  ADS  Google Scholar 

  127. Luong, D. H. et al. Tunneling photocurrent assisted by interlayer excitons in staggered van der Waals hetero-bilayers. Adv. Mater. 29, 1701512 (2017).

    Article  Google Scholar 

  128. Wang, S., Khafizov, M., Tu, X., Zheng, M. & Krauss, T. D. Multiple exciton generation in single-walled carbon nanotubes. Nano Lett. 10, 2381–2386 (2010).

    Article  ADS  Google Scholar 

  129. Malapanis, A., Perebeinos, V., Sinha, D. P., Comfort, E. & Lee, J. U. Quantum efficiency and capture cross section of first and second excitonic transitions of single-walled carbon nanotubes measured through photoconductivity. Nano Lett. 13, 3531–3538 (2013).

    Article  ADS  Google Scholar 

  130. Aspitarte, L., McCulley, D. R. & Minot, E. D. Photocurrent quantum yield in suspended carbon nanotube p–n junctions. Nano Lett. 16, 5589–5593 (2016).

    Article  ADS  Google Scholar 

  131. McCulley, D. R., Senger, M. J., Bertoni, A., Perebeinos, V. & Minot, E. D. Extremely efficient photocurrent generation in carbon nanotube photodiodes enabled by a strong axial electric field. Nano Lett. 20, 433–440 (2020).

    Article  ADS  Google Scholar 

  132. Barati, F. et al. Hot carrier-enhanced interlayer electron–hole pair multiplication in 2D semiconductor heterostructure photocells. Nat. Nanotechnol. 12, 1134–1139 (2017). Experimental evidence of interlayer CM in a 2D van der Waals heterostructure near room temperature.

    Article  ADS  Google Scholar 

  133. Nourbakhsh, A., Zubair, A., Dresselhaus, M. S. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016).

    Article  ADS  Google Scholar 

  134. Ryan, J. F. et al. Time-resolved photoluminescence of two-dimensional hot carriers in GaAs-AlGaAs heterostructures. Phys. Rev. Lett. 53, 1841–1844 (1984).

    Article  ADS  Google Scholar 

  135. Nguyen, D.-T. et al. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature. Nat. Energy 3, 236–242 (2018).

    Article  ADS  Google Scholar 

  136. Hirst, L. C., Walters, R. J., Führer, M. F. & Ekins-Daukes, N. J. Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell. Appl. Phys. Lett. 104, 231115 (2014).

    Article  ADS  Google Scholar 

  137. Hirst, L. C., Fujii, H., Wang, Y., Sugiyama, M. & Ekins-Daukes, N. J. Hot carriers in quantum wells for photovoltaic efficiency enhancement. IEEE J. Photovolt. 4, 244–252 (2014).

    Article  Google Scholar 

  138. Esmaielpour, H. et al. Exploiting intervalley scattering to harness hot carriers in III–V solar cells. Nat. Energy 5, 336–343 (2020).

    Article  ADS  Google Scholar 

  139. Varghese, A. et al. Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 20, 1707–1717 (2020).

    Article  ADS  Google Scholar 

  140. Richter, J. M. et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun. 8, 376 (2017).

    Article  ADS  Google Scholar 

  141. Fu, J. et al. Author Correction: Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 9, 238 (2018).

    Article  ADS  Google Scholar 

  142. Yang, J. et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8, 14120 (2017).

    Article  ADS  Google Scholar 

  143. Evans, T. J. S. et al. Competition between hot-electron cooling and large polaron screening in CsPbBr3 perovskite single crystals. J. Phys. Chem. C 122, 13724–13730 (2018).

    Article  Google Scholar 

  144. Bretschneider, S. A. et al. Quantifying polaron formation and charge carrier cooling in lead-iodide perovskites. Adv. Mater. 30, 1707312 (2018).

    Article  Google Scholar 

  145. Kaur, G., Babu, K. J. & Ghosh, H. N. Temperature-dependent interplay of polaron formation and hot carrier cooling dynamics in CsPbBr3 nanocrystals: role of carrier–phonon coupling strength. J. Phys. Chem. Lett. 11, 6206–6213 (2020).

    Article  Google Scholar 

  146. Tang, Q., Zhou, Q., Duan, J., Yang, X. & Duan, Y. Interfacial strain release from the WS2/CsPbBr3 van der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 59, 21997–22001 (2020).

    Article  Google Scholar 

  147. Cheng, H.-C. et al. van der Waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016).

    Article  ADS  Google Scholar 

  148. Fang, Q. et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett. 9, 1655–1662 (2018).

    Article  Google Scholar 

  149. Semonin, O. E., Luther, J. M. & Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today 15, 508–515 (2012).

    Article  Google Scholar 

  150. Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 7, 306–310 (2013).

    Article  ADS  Google Scholar 

  151. Asahi, S., Teranishi, H., Kusaki, K., Kaizu, T. & Kita, T. Two-step photon up-conversion solar cells. Nat. Commun. 8, 14962 (2017).

    Article  ADS  Google Scholar 

  152. Huang, Z. et al. Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27, 7503–7507 (2015).

    Article  Google Scholar 

  153. Einzinger, M. et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019).

    Article  ADS  Google Scholar 

  154. Bardeen, C. J. Time dependent correlations of entangled states with nondegenerate branches and possible experimental realization using singlet fission. J. Chem. Phys. 151, 124503 (2019).

    Article  ADS  Google Scholar 

  155. Broch, K. et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 9, 954 (2018).

    Article  ADS  Google Scholar 

  156. König, D. et al. Hot carrier solar cells: Principles, materials and design. Phys. E Low Dimens. Syst. Nanostruct. 42, 2862–2866 (2010).

    Article  ADS  Google Scholar 

  157. Würfel, P. Solar energy conversion with hot electrons from impact ionisation. Sol. Energy Mater. Sol. Cell 46, 43–52 (1997).

    Article  Google Scholar 

  158. Paul, K. K. et al. Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS2/TiO2(B) heterojunction by selective decoration of platinum nanoparticles at the MoS2 edge sites. J. Mater. Chem. A 6, 22681–22696 (2018).

    Article  Google Scholar 

  159. Le Bris, A. & Guillemoles, J. F. Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts. Appl. Phys. Lett. 97, 113506 (2010).

    Article  ADS  Google Scholar 

  160. Guter, W. et al. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009).

    Article  ADS  Google Scholar 

  161. Lang, F. et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30, 1702905 (2018).

    Article  Google Scholar 

  162. Kahmann, S. & Loi, M. A. Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit. J. Mater. Chem. C 7, 2471–2486 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript preparation, revision and editing.

Corresponding authors

Correspondence to Ji-Hee Kim or Young Hee Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Hirendra Ghosh, Nathaniel Gabor and another, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tandem cells

High-performance multijunction photovoltaic devices that sequentially absorb wide-range solar energy.

Carrier multiplication

(CM). Interband carrier–carrier scattering increasing the overall carrier density in the conduction band, also referred to as inverse Auger recombination.

Decay cascade

When a LO phonon decays its energy by successive emission of multiple optical and acoustic phonons.

Auger recombination

(AR). Interband carrier–carrier scattering reducing the overall carrier density in the conduction band.

Internal quantum efficiency

Ratio between the number of photocarriers collected and the number of photons absorbed by the graphene layer.

A-exciton, B-exciton and C-exciton states

A and B excitonic states arise due to spin–orbit-coupling-induced valence band splitting at the K-point. The C-exciton originates from the band nesting region on the higher-energy side.

Auger heating

Auger recombination increases the total energy of carriers, therefore, heating the electronic system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, K.K., Kim, JH. & Lee, Y.H. Hot carrier photovoltaics in van der Waals heterostructures. Nat Rev Phys 3, 178–192 (2021). https://doi.org/10.1038/s42254-020-00272-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-020-00272-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing