Skip to main content
Log in

Effect of soft reduction process on segregation of a 400 mm thick high-alloy steel slab

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

During the solidification of high-alloy steel (0.4C–1.5Mn–2Cr–0.35Mo–1.5Ni), the high temperature gradient of solidified shell as well as the columnar crystal development would contribute to the centre segregation and cracking due to the high carbon and alloy contents. The effect of soft reduction process on the segregation of a 400 mm thick high-alloy steel slab was analysed. Industrial trials in a steel mill were performed combining with segregation analysis. The inner quality of the high-alloy steel slab produced through the optimised soft reduction procedures and had a significant improvement in centre segregation. The reduction amount is increased from 20% of solid phase fraction, to avoid the segregation due to the long liquid core, and the reduction rate is deceased from 1.35 to 0.88 mm/m as well. This operation would contribute to the symmetrical distribution of solute element and decrease the segregation to avoid the cracking. An obvious improvement in centre segregation to mainly 1.0 class of high-alloy slab after procedure optimization was achieved. The quality improvement of slab would ensure the quality of downstream forging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.J. Allen, B. Harvey, S.J. Brett, Int. J. Press. Ves. Pip. 84 (2007) 104–113.

    Article  Google Scholar 

  2. F. Abe, M. Taneike, K. Sawada, Int. J. Press. Ves. Pip. 84 (2007) 3–12.

    Article  Google Scholar 

  3. W. Bendick, J. Gabrel, B. Hahn, B. Vandenberghe, Int. J. Press. Ves. Pip. 84 (2007) 13–20.

    Article  Google Scholar 

  4. B. Arivazhagan, M. Vasudevan, J. Manuf. Process. 18 (2015) 55–59.

    Article  Google Scholar 

  5. S.Y. Zhang, S. Morito, Y.I. Komizo, ISIJ Int. 52 (2012) 510–515.

    Article  Google Scholar 

  6. Y.A. Min, Q. Zhou, Y. Luo, D. Li, X.C. Wu, J. Iron Steel Res. Int. 19 (2012) No. 12, 53–58.

  7. D.W. Hetzner, W.V. Geertruyden, Mater. Charact. 59 (2008) 825–841.

    Article  Google Scholar 

  8. B. He, Procedia Eng. 23 (2011) 46–52.

    Article  Google Scholar 

  9. J.E. Kelly, K.P. Michalek, T.G. O'connor, B.G. Thomas, J.A. Dantzig, Metall. Trans. A 19 (1988) 2589–2602.

  10. D.A. Mirzayev, E.A. Fominykh, O.K. Tokovoi, N.I. Vorob'ev, D.V. Shaburov, I.L. Yakovleva, Phys. Metals Metall. 103 (2007) 292–298.

    Article  Google Scholar 

  11. H. Preßlinger, S. Ilie, P. Reisinger, A. Schiefermüller, A. Pissenberger, E. Parteder, C. Bernhard, ISIJ Int. 46 (2006) 1845–1851.

    Article  Google Scholar 

  12. J.A. Dantzig, M. Rappaz, Solidification, CRC Press, New York, USA, 2009.

    Book  Google Scholar 

  13. M. Réger, B. Verő, R. Józsa, Acta Polytech. Hung. 11 (2014) 119–137.

    Google Scholar 

  14. C. Gheorghies, I. Crudu, C. Teletin, C. Spanu, J. Iron Steel Res. Int. 16 (2009) No. 1, 12–16.

  15. S. Ogibayashi, M. Kobayashi, M. Yamada, T. Mukai, ISIJ Int. 31 (1991) 1400–1407.

    Article  Google Scholar 

  16. K. Isobe, H. Maede, K. Syukuri, S. Satou, T. Horie, M. Nikaidou, I. Suzuki, Tetsu-to-Hagane 80 (1994) 42–47.

    Article  Google Scholar 

  17. R. Thome, K. Harste, ISIJ Int. 46 (2006) 1839–1844.

    Article  Google Scholar 

  18. C.H. Yim, J.K. Park, B.D. You, S.M. Yang, ISIJ Int. 36 (1996) S231–S234.

    Article  Google Scholar 

  19. K.I. Miyazawa, Sci. Technol. Adv. Mater. 2 (2001) 59–65.

    Article  Google Scholar 

  20. A. Scholes, Ironmak. Steelmak. 32 (2005) 101–108.

    Article  Google Scholar 

  21. P. Sivesson, C.M. Raihle, J. Konttinen, Mater. Sci. Eng. A 173 (1993) 299–304.

    Article  Google Scholar 

  22. T. Matsumiya, ISIJ Int. 46 (2006) 1800–1804.

    Article  Google Scholar 

  23. B. Rogberg, L. Ek, ISIJ Int. 58 (2018) 478–487.

    Article  Google Scholar 

  24. D.B. Jiang, W.L. Wang, S. Luo, C. Ji, M.Y. Zhu, Int. J. Heat Mass Transfer 122 (2018) 315–323.

    Article  Google Scholar 

  25. S.Q. Zhou, X.D. Cheng, D.B. Jiang, S.W. Zhang, Y.H. Sun, M.Y. Zhu, China Metallurgy 28 (2018) 17–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-sheng Chu or Yong Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Rs., Li, Zj., Liu, Jg. et al. Effect of soft reduction process on segregation of a 400 mm thick high-alloy steel slab. J. Iron Steel Res. Int. 28, 272–278 (2021). https://doi.org/10.1007/s42243-020-00542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00542-6

Keywords

Navigation