Skip to main content
Log in

On the Right-Symmetric Algebras with a Unital Matrix Subalgebra

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Under study are the right-symmetric algebras over a field \( F \) which possess a “unital” matrix subalgebra \( M_{n}(F) \). We classify all these finite-dimensional right-symmetric algebras \( {\mathcal{A}}=W\oplus M_{2}(F) \) in the case when \( W \) is an irreducible module over \( sl_{2}(F) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koszul J.-L., “Domaines bornés homogènes et orbites de groupes de transformations affines,” Bull. Soc. Math. France, vol. 89, 515–533 (1961).

    Article  MathSciNet  Google Scholar 

  2. Vinberg E. B., “The theory of convex homogeneous cones,” Trans. Moscow Math. Soc., vol. 12, 1033–1047 (1963).

    Google Scholar 

  3. Gerstenhaber M., “On the deformation of rings and algebras,” Ann. Math. (2), vol. 79, no. 1, 59–103 (1964).

    Article  MathSciNet  Google Scholar 

  4. Golubchik I. Z. and Sokolov V. V., “Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras,” J. Nonlinear Math. Phys., vol. 7, no. 2, 184–197 (2000).

    Article  MathSciNet  Google Scholar 

  5. Milnor J., “On fundamental groups of complete affinely flat manifolds,” Adv. Math., vol. 25, no. 2, 178–187 (1977).

    Article  MathSciNet  Google Scholar 

  6. Segal D., “The structure of complete left-symmetric algebras,” Math. Ann., vol. 293, no. 3, 569–578 (1992).

    Article  MathSciNet  Google Scholar 

  7. Gubarev V. Y. and Kolesnikov P. S., “Operads of decorated trees and their duals,” Comment. Math. Univ. Carolinae, vol. 55, no. 4, 421–445 (2014).

    MathSciNet  MATH  Google Scholar 

  8. Kleinfeld E., “On rings satisfying \( (x,y,z)=(x,z,y) \),” Alg. Groups Geom., vol. 4, no. 2, 129–138 (1987).

    MATH  Google Scholar 

  9. Zelmanov E., “On a class of local translation invariant Lie algebras,” Soviet Math. Dokl., vol. 35, no. 6, 216–218 (1987).

    MathSciNet  Google Scholar 

  10. Osborn J. M., “Novikov algebras,” Nova J. Algebra Geom., vol. 1, 1–14 (1992).

    MathSciNet  MATH  Google Scholar 

  11. Burde D., “Left-invariant affine structures on reductive Lie groups,” J. Algebra, vol. 181, no. 3, 884–902 (1996).

    Article  MathSciNet  Google Scholar 

  12. Xu X., “Classification of simple Novikov algebras and their irreducible modules of characteristic 0,” J. Algebra, vol. 246, no. 2, 673–707 (2001).

    Article  MathSciNet  Google Scholar 

  13. Helmstetter J., “Radical d’une algébre symétrique a gauche,” Ann. Inst. Fourier (Grenoble), vol. 29, no. 4, 17–35 (1979).

    Article  MathSciNet  Google Scholar 

  14. Burde D., “Left-symmetric structures on simple modular Lie algebras,” J. Algebra, vol. 169, no. 1, 112–138 (1994).

    Article  MathSciNet  Google Scholar 

  15. Baues O., “Left-symmetric algebras for \( \mathfrak{gl}(n) \),” Trans. Amer. Math. Soc., vol. 351, no. 7, 2979–2996 (1999).

    Article  MathSciNet  Google Scholar 

  16. Kleinfeld E., “Assosymmetric rings,” Proc. Amer. Math. Soc., vol. 8, 983–986 (1957).

    Article  MathSciNet  Google Scholar 

  17. Gelfand I. M. and Dorfman I. Ya., “Hamiltonian operators and algebraic structures related to them,” Funct. Anal. Appl., vol. 13, no. 4, 248–262 (1979).

    Article  Google Scholar 

  18. Balinskii A. A. and Novikov S. P., “Poisson brackets of hydrodynamic type, Frobenius algebras, and Lie algebras,” Dokl. Akad. Nauk SSSR, vol. 283, no. 5, 1036–1039 (1985).

    MathSciNet  MATH  Google Scholar 

  19. Filippov V. T., “A class of simple nonassociative algebras,” Math. Notes, vol. 45, no. 1, 68–71 (1989).

    Article  MathSciNet  Google Scholar 

  20. Osborn J. M., “Simple Novikov algebras with an idempotent,” Comm. Algebra, vol. 20, no. 9, 2729–2753 (1992).

    Article  MathSciNet  Google Scholar 

  21. Auslander L., “Simply transitive groups of affine motions,” Amer. Math. J., vol. 99, no. 1, 215–222 (1977).

    MathSciNet  MATH  Google Scholar 

  22. Burde D., “Simple left-symmetric algebras with solvable Lie algebra,” Manuscripta Math., vol. 95, no. 3, 397–411 (1998).

    Article  MathSciNet  Google Scholar 

  23. Helmstetter J., “Algebres symetriques a gauche,” C. R. Acad. Sc. Paris Ser. A–B, vol. 272, A1088–A1091 (1971).

    MathSciNet  MATH  Google Scholar 

  24. Jacobson N., Lie Algebras, Wiley and Sons, New York etc. (1962).

    MATH  Google Scholar 

Download references

Funding

A. P. Pozhidaev was supported by the FAPESP (2018/05372–7) and I. P. Shestakov by the FAPESP (2018/23690–6) and CNPq 304313/2019–0. The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pozhidaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozhidaev, A.P., Shestakov, I.P. On the Right-Symmetric Algebras with a Unital Matrix Subalgebra. Sib Math J 62, 138–147 (2021). https://doi.org/10.1134/S0037446621010158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621010158

Keywords

UDC

Navigation