Skip to main content
Log in

How much faster does the best polynomial approximation converge than Legendre projection?

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We compare the convergence behavior of best polynomial approximations and Legendre and Chebyshev projections and derive optimal rates of convergence of Legendre projections for analytic and differentiable functions in the maximum norm. For analytic functions, we show that the best polynomial approximation of degree n is better than the Legendre projection of the same degree by a factor of \(n^{1/2}\). For differentiable functions such as piecewise analytic functions and functions of fractional smoothness, however, we show that the best approximation is better than the Legendre projection by only some constant factors. Our results provide some new insights into the approximation power of Legendre projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almkvist, G., Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic–geometric mean, ellipses, \(\pi \), and the ladies diary. Am. Math. Mon. 95(7), 585–608 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158–179 (1991)

    Article  MathSciNet  Google Scholar 

  3. Antonov, V.A., Holsevnikov, K.V.: An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein’s inequality). Vestnik Leningrad Univ. Math. 13, 163–166 (1981)

    MATH  Google Scholar 

  4. Bernstein, S.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mem. Cl. Sci. Acad. Roy. Belg. 4, 1–103 (1912)

    MATH  Google Scholar 

  5. Brass, H., Petras, K.: Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. American Mathematical Society, Providence, RI (2011)

    Book  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  Google Scholar 

  7. Cheney, E.W.: Introduction to Approximation Theory. AMS Chelsea Publishing, Providence, RI (1998)

    MATH  Google Scholar 

  8. Clenshaw, C.W.: A comparison of “best” polynomial approximations with truncated Chebyshev series expansions. SIAM Numer. Anal. 1(1), 26–37 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, London (1984)

    MATH  Google Scholar 

  10. Driscoll, T.A., Hale, H., Trefethen, L.N.: Chebfun User’s Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  11. Eriksson, K.: Some error estimates for the \(p\)-version of the finite element method. SIAM J. Numer. Anal. 23(2), 403–411 (1986)

    Article  MathSciNet  Google Scholar 

  12. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, London (2007)

    MATH  Google Scholar 

  13. Gui, W., Babuška, I.: The \(h, p\) and \(h\)-\(p\) versions of the finite element method in 1 dimension. Numer. Math. 49, 577–612 (1986)

    Article  MathSciNet  Google Scholar 

  14. Hesthaven, J.H., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  15. Iserles, A.: A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529–553 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jameson, G.J.O.: Inequalities for the perimeter of an ellipse. Math. Gazette 98, 227–234 (2014)

    Article  Google Scholar 

  17. Liu, W.-J., Wang, L.-L., Li, H.-Y.: Optimal error estimates for Chebyshev approximation of functions with limited regularity in fractional Sobolev-type spaces. Math. Comput. 88(320), 2857–2895 (2019)

    Article  MathSciNet  Google Scholar 

  18. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  19. Qu, C.K., Wong, R.: Szego’s conjecture on Lebesgue constants for Legendre series. Pac. J. Math. 135(1), 157–188 (1988)

    Article  MathSciNet  Google Scholar 

  20. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  21. Osipov, A., Rokhlin, V., Xiao, H.: Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation. Springer, Berlin (2013)

    Book  Google Scholar 

  22. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, Inc., New York (1981)

    MATH  Google Scholar 

  23. Saff, E.B., Totik, V.: Polynomial approximation of piecewise analytic functions. J. Lond. Math. Soc. s2–39, 487–498 (1989)

    Article  MathSciNet  Google Scholar 

  24. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Suetin, P.K.: Representation of continuous and differentiable functions by Fourier series of Legendre polynomials. Dokl. Akad. Nauk SSSR 158(6), 1275–1277 (1964)

    MathSciNet  Google Scholar 

  27. Szegő, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence, RI (1939)

    MATH  Google Scholar 

  28. Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  29. Townsend, A., Webb, M., Olver, S.: Fast polynomial transforms based on Toeplitz and Hankel matrices. Math. Comput. 87(312), 1913–1934 (2018)

    Article  MathSciNet  Google Scholar 

  30. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  31. Wang, H.-Y., Xiang, S.-H.: On the convergence rates of Legendre approximation. Math. Comput. 81(278), 861–877 (2012)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.-Y.: On the optimal estimates and comparison of Gegenbauer expansion coefficients. SIAM J. Numer. Anal. 54(3), 1557–1581 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wang, H.-Y.: A new and sharper bound for Legendre expansion of differentiable functions. Appl. Math. Lett. 85, 95–102 (2018)

    Article  MathSciNet  Google Scholar 

  34. Wang, H.-Y.: On the optimal rates of convergence of Gegenbauer projections. arXiv:2008.00584 (2020)

  35. Xiang, S.-H.: On error bounds for orthogonal polynomial expansions and Gauss-type quadrature. SIAM J. Numer. Anal. 50(3), 1240–1263 (2012)

    Article  MathSciNet  Google Scholar 

  36. Xiang, S.-H., Liu, G.-D.: Optimal decay rates on the asymptotics of orthogonal polynomial expansions for functions of limited regularities. Numer. Math. 145, 117–148 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhao, X.-D., Wang, L.-L., Xie, Z.-Q.: Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 51(3), 1443–1469 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank two anonymous referees for their careful reading of the manuscript and helpful comments which have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by National Natural Science Foundation of China under Grant number 11671160.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. How much faster does the best polynomial approximation converge than Legendre projection?. Numer. Math. 147, 481–503 (2021). https://doi.org/10.1007/s00211-021-01173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01173-z

Mathematics Subject Classification

Navigation