Skip to main content
Log in

Harmonic maps and shift-invariant subspaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

With the help of operator-theoretic methods, we derive new and powerful criteria for finiteness of the uniton number for a harmonic map from a Riemann surface to the unitary group \({{\,\mathrm{U}\,}}(n)\). These use the Grassmannian model where harmonic maps are represented by families of shift-invariant subspaces of \(L^2(S^1,{{\mathbb {C}}}^n)\); we give a new description of that model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleman, A., Pacheco, R., Wood, J.C.: Symmetric shift-invariant subspaces and harmonic maps. Math. Z. (to appear). Preprint available at arXiv:1908.01557

  2. Bell, S.R.: The Cauchy Transform, Potential Theory and Conformal Mapping, 2nd edn. Chapman & Hall, Boca Raton (2016)

    MATH  Google Scholar 

  3. Bahy-El-Dien, A., Wood, J.C.: The explicit construction of all harmonic two-spheres in \(G_2({ R}^n)\). J. Reine Angew. Math. 398, 36–66 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bolton, J., Pedit, F., Woodward, L.M.: Minimal surfaces and the affine Toda field model. J. Reine Angew. Math. 459, 119–150 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Bolton, J., Woodward, L.M.: The affine Toda equations and minimal surfaces. In: Harmonic Maps and Integrable Systems, pp. 59–82. Vieweg, Braunschweig (1994). http://www.maths.leeds.ac.uk/pure/staff/wood/FordyWood/contents.html

  6. Burstall, F.E., Pedit, F.: Dressing orbits of harmonic maps. Duke Math. J. 80, 353–382 (1995)

    Article  MathSciNet  Google Scholar 

  7. Burstall, F.E., Wood, J.C.: The construction of harmonic maps into complex Grassmannians. J. Differ. Geom. 23, 255–298 (1986)

    Article  MathSciNet  Google Scholar 

  8. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry. Revised reprint of the 1975 original, AMS Chelsea Publishing, Providence. RI (2008)

  9. Chern, S.-S., Wolfson, J.G.: Harmonic maps of the two-sphere into a complex Grassmann manifold II. Ann. Math. (2) 125(2), 301–335 (1987)

    Article  MathSciNet  Google Scholar 

  10. Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6(4), 633–668 (1998)

    Article  MathSciNet  Google Scholar 

  11. Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps, CBMS Regional Conference Series, vol. 50, Amer. Math. Soc. (1983)

  12. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  13. Erdem, S., Wood, J.C.: On the construction of harmonic maps into a Grassmannian. J. Lond. Math. Soc. (2) 28, 161–174 (1983)

    Article  MathSciNet  Google Scholar 

  14. Forster, O.: Lectures on Riemann Surfaces, Translated from the 1977 German Original by Bruce Gilligan. Reprint of the 1981 English Translation. Graduate Texts in Mathematics, vol. 81. Springer, New York (1991)

  15. Guest, M.A.: Harmonic Maps, Loop Groups, and Integrable Systems, London Mathematical Society Student Texts, vol. 38. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  16. Guest, M.A.: From Quantum Cohomology to Integrable Systems, Oxford Graduate Texts in Mathematics, vol. 15. Oxford University Press, Cambridge (2008)

    Google Scholar 

  17. Gulliver, R.D., Osserman, R., Royden, H.L.: A theory of branched immersions of surfaces. Am. J. Math. 95, 750–812 (1973)

    Article  MathSciNet  Google Scholar 

  18. Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann 135, 263–273 (1958)

    Article  MathSciNet  Google Scholar 

  19. Helson, H.: Lectures on Invariant Subspaces. Academic Press, New York (1964)

    MATH  Google Scholar 

  20. Jensen, G.R., Liao, R.: Families of flat minimal tori in \(CP^n\). J. Differ. Geom. 42(1), 113–132 (1995)

    Article  Google Scholar 

  21. Lang, S.: Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

    Book  Google Scholar 

  22. Lax, P.D.: Functional Analysis, Pure and Applied Mathematics. Wiley, New York (2002)

    Google Scholar 

  23. Nikol’skii, N.K.: Treatise on the shift operator. Spectral function theory, Grundlehren der Mathematischen Wissenschaften, vol. 273. Springer, Berlin (1986)

  24. Ohnita, Y., Valli, G.: Pluriharmonic maps into compact Lie groups and factorization into unitons. Proc. Lond. Math. Soc. 61, 546–570 (1990)

    Article  MathSciNet  Google Scholar 

  25. Peller, V.: Hankel Operators and Their Applications. Springer, New York (2003)

    Book  Google Scholar 

  26. Pressley, A., Segal, G.: Loop Groups. Oxford Mathematical Monographs. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  27. Segal, G.: Loop Groups and Harmonic Maps, Advances in Homotopy Theory (Cortona, 1988). London Mathematical Society Lecture Note Series, pp. 153–164, vol. 139, Cambridge Univ. Press, Cambridge (1989)

  28. Svensson, M., Wood, J.C.: Filtrations, factorizations and explicit formulae for harmonic maps. Commun. Math. Phys. 310, 99–134 (2012)

    Article  MathSciNet  Google Scholar 

  29. Svensson, M., Wood, J.C.: New constructions of twistor lifts for harmonic maps. Manuscr. Math. 44, 457–502 (2014)

    Article  MathSciNet  Google Scholar 

  30. Uhlenbeck, K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differ. Geom. 30, 1–50 (1989)

    Article  MathSciNet  Google Scholar 

  31. Urakawa, H.: Calculus of Variations and Harmonic Maps, Translations of Mathematical Monographs, vol. 132. Amer. Math. Soc. (1993)

  32. Wood, J.C.: Explicit constructions of harmonic maps. In: Loubeau, E., Montaldo, S. (eds.) Harmonic Maps and Differential Geometry. Contemporary Mathematics, vol. 542, pp. 41–74. Amer. Math. Soc. (2011)

  33. Zakrzewski, W.J.: Low-Dimensional Sigma Models. Adam Hilger Ltd, Bristol (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Pacheco.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by Fundação para a Ciência e Tecnologia through the project UID/MAT/00212/2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleman, A., Pacheco, R. & Wood, J.C. Harmonic maps and shift-invariant subspaces. Monatsh Math 194, 625–656 (2021). https://doi.org/10.1007/s00605-021-01516-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01516-w

Keywords

Mathematics Subject Classification

Navigation