Skip to main content

Advertisement

Log in

Ambient air characteristics of biogenic volatile organic compounds at a tropical evergreen forest site in Central Western Ghats of India

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Non-methane volatile organic compounds (NMVOCs) play key roles in local and regional atmospheric chemistry as precursors for the production of ozone and secondary organic aerosols. Ambient air C2-C5 NMVOCs were measured at a tropical forest site in the central Western Ghats and urban site of Udaipur in India during the late monsoon period of 2016–17 and 2015, respectively. In the Western Ghats, air samples were collected from the protected Bhagwan Mahaveer Sanctuary. Ethene, propene, and isoprene were the dominant biogenic compounds with mean concentrations of 4.8 ± 2, 1.6 ± 0.66 and 1.05 ± 0.43 ppb, respectively. The concentrations of anthropogenic compounds such as propane and pentane were significantly lower than those of light alkenes. The contributions of ethene and propene among different NMVOCs were ~ 44 and 14%, respectively. However, the contributions of isoprene were highly variable of 3–22%. The tight correlation (r2 = 0.90) between the mixing ratios of ethene and propene and their ratio indicates their common formation and emission mechanisms. The molar emission ratio of ethene/propene (2.9 ± 0.17 ppb ppb−1) was comparable to those measured at other biogenic sites of Asia while higher than those reported for mid-latitude sites. The concentrations of light alkenes and isoprene at the Western Ghats were 4–5 times higher than those measured in an urban environment in the same season. The higher ozone formation potentials and Propylene-Equivalent concentrations of alkenes and isoprene than those of other NMVOCs indicate important implications of biogenic emissions on ozone photochemistry in the forest regions of India.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data used in this present are available in figshare repository (https://figshare.com/s/f9e34ad1363906e96905).

References

  • Ambade, B., Sankar, T.K., Kumar, A., Sethi, S.S.: Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur City, India. J. Hazardous Toxic Radioactive Waste. 24, 04020003 (2020a). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000490

    Article  Google Scholar 

  • Ambade, B., Sethi, S.S., Kumar, A., Sankar, T.K., Kurwadkar, S.: Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand. East India. Arch Environ Contam Toxicol. 80, 120–133 (2020). https://doi.org/10.1007/s00244-020-00779-y

  • Atkinson, R., Arey, J.: Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605–4638 (2003). https://doi.org/10.1021/cr0206420

    Article  Google Scholar 

  • Atkinson, R., Baulch, D., Cox, R., Hampson Jr., R., Kerr, J., Rossi, M., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data Monogr. 26, 1329–1499 (1997). https://doi.org/10.1063/1.556048

    Article  Google Scholar 

  • Bonsang, B., Lambert, G.: Nonmethane hydrocarbons in an oceanic atmosphere. J. Atmos. Chem. 2, 257–271 (1985). https://doi.org/10.1007/BF00051076

    Article  Google Scholar 

  • Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J., Guillermo, R.: An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 35, 3749–3760 (2001)

    Google Scholar 

  • Carter, W.P.: Development of ozone reactivity scales for volatile organic compounds. Air Waste. 44, 881–899 (1994)

    Google Scholar 

  • Carter, W.P.: Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. California Air Resources Board Contract. 2009, 339 (2009)

    Google Scholar 

  • Chaliyakunnel, S., Millet, D.B., Chen, X.: Constraining emissions of volatile organic compounds over the Indian subcontinent using space-based formaldehyde measurements. J. Geophys. Res.: Atmos. 124(19), 10525–10545 (2019). https://doi.org/10.1029/2019JD031262

  • Chameides, W., Fehsenfeld, F., Rodgers, M., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D., Rasmussen, R., Zimmerman, P.: Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. Atmos. 97, 6037–6055 (1992)

    Google Scholar 

  • Datar, M.N., Lakshminarasimhan, P.: Check list of wild angiosperms of Bhagwan Mahavir (Molem) National Park, Goa, India [with erratum]. Check List. 9, 186–207 (2013)

    Google Scholar 

  • Dave, P.N., Sahu, L.K., Tripathi, N., Bajaj, S., Yadav, R., Patel, K.: Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: impact on local air quality. Heliyon. 6, e04537 (2020)

    Google Scholar 

  • Dicke, M., Baldwin, I.T.: The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175 (2010)

    Google Scholar 

  • Donoso, L., Romero, R., Rondón, A., Fernandez, E., Oyola, P., Sanhueza, E.: Natural and anthropogenic C 2 to C 6 hydrocarbons in the central-eastern Venezuelan atmosphere during the rainy season. J. Atmos. Chem. 25, 201–214 (1996)

    Google Scholar 

  • Fasbender, L., Yáñez-Serrano, A.M., Kreuzwieser, J., Dubbert, D., Werner, C.: Real-time carbon allocation into biogenic volatile organic compounds (BVOCs) and respiratory carbon dioxide (CO2) traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labelling. PLoS One. 13, e0204398 (2018)

    Google Scholar 

  • Goldstein, A., Fan, S., Goulden, M., Munger, J., Wofsy, S.: Emissions of ethene, propene, and 1-butene by a midlatitude forest. J. Geophys. Res. Atmos. 101, 9149–9157 (1996)

    Google Scholar 

  • Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.: A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 100, 8873–8892 (1995). https://doi.org/10.1029/94JD02950

    Article  Google Scholar 

  • Guenther, A., Jiang, X., Heald, C., Sakulyanontvittaya, T., Duhl, T., Emmons, L., Wang, X.: The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. (2012). https://doi.org/10.5194/gmd-5-1471-2012

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 6, 3181–3210 (2006)

    Google Scholar 

  • Hayward, S., Muncey, R., James, A., Halsall, C.J., Hewitt, C.N.: Monoterpene emissions from soil in a Sitka spruce forest. Atmos. Environ. 35, 4081–4087 (2001)

    Google Scholar 

  • Hellén, H., Hakola, H., Pystynen, K.-H., Rinne, J., Haapanala, S.: C 2-C 10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences. 3, 167–174 (2006)

    Google Scholar 

  • Holopainen, J.K., Gershenzon, J.: Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176–184 (2010)

    Google Scholar 

  • Hoorn, C., Wesselingh, F., Ter Steege, H., Bermudez, M., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C., Figueiredo, J.: Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 330, 927–931 (2010). https://doi.org/10.1126/science.1194585

    Article  Google Scholar 

  • Hough, A.M.: Development of a two-dimensional global tropospheric model: model chemistry. J. Geophys. Res. Atmos. 96, 7325–7362 (1991)

    Google Scholar 

  • Isidorov, V., Jdanova, M.: Volatile organic compounds from leaves litter. Chemosphere. 48, 975–979 (2002)

    Google Scholar 

  • Jobson, B., Wu, Z., Niki, H., Barrie, L.: Seasonal trends of isoprene, C2–C5 alkanes, and acetylene at a remote boreal site in Canada. J. Geophys. Res. Atmos. 99, 1589–1599 (1994)

    Google Scholar 

  • Joshi, J., Karanth, P.: Did southern Western Ghats of peninsular India serve as refugia for its endemic biota during the cretaceous volcanism? Ecol. Evol. 3, 3275–3282 (2013)

    Google Scholar 

  • Kesselmeier, J., Staudt, M.: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33, 23–88 (1999). https://doi.org/10.1023/A:1006127516791

    Article  Google Scholar 

  • Kumar, A., Ambade, B., Sankar, T.K., Sethi, S.S., Kurwadkar, S.: Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable cities and society 52, 101801. (2020). https://doi.org/10.1016/j.scs.2019.101801

  • Kuzma, J., Nemecek-Marshall, M., Pollock, W.H., Fall, R.: Bacteria produce the volatile hydrocarbon isoprene. Curr. Microbiol. 30, 97–103 (1995)

    Google Scholar 

  • Lamanna, M.S., Goldstein, A.H.: In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation. J. Geophys. Res. Atmos. 104, 21247–21262 (1999)

    Google Scholar 

  • Liss, P.S., Johnson, M.T.: Ocean-Atmosphere Interactions of Gases and Particles. Springer (2014)

  • Loreto, F., Barta, C., Brilli, F., Nogues, I.: On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 29, 1820–1828 (2006)

    Google Scholar 

  • Loreto, F., Schnitzler, J.-P.: Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166 (2010)

    Google Scholar 

  • Lun, X., Lin, Y., Chai, F., Fan, C., Liu, J.: Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. J. Environ. Sci. 95, 266–277 (2020). https://doi.org/10.1016/j.jes.2020.04.043

    Article  Google Scholar 

  • Malik, T.G., Gajbhiye, T., Pandey, S.K.: Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. Environ. Monit. Assess. 190, 631 (2018)

    Google Scholar 

  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A., Kent, J.: Biodiversity hotspots for conservation priorities. Nature. 403, 853–858 (2000)

    Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B.: Anthropogenic and natural radiative forcing. Climate Change. 423, 658–740 (2013). https://doi.org/10.1017/CBO9781107415324.018

  • Nichol, J., Wong, M.S.: Estimation of ambient BVOC emissions using remote sensing techniques. Atmos. Environ. 45, 2937–2943 (2011)

    Google Scholar 

  • NRC (National Research Council): Rethinking the ozone problem in urban and regional air pollution. National Academies Press, Washington, District of Columbia (1992)

  • Poisson, N., Kanakidou, M., Crutzen, P.J.: Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J. Atmos. Chem. 36, 157–230 (2000)

    Google Scholar 

  • Ratte, M., Plass-Dülmer, C., Koppmann, R., Rudolph, J., Denga, J.: Production mechanism of C2-C4 hydrocarbons in seawater: field measurements and experiments. Global Biogeochem. Cycles. 7, 369–378 (1993). https://doi.org/10.1029/93GB00054

    Article  Google Scholar 

  • Rhew, R.C., Deventer, M.J., Turnipseed, A.A., Warneke, C., Ortega, J., Shen, S., Martinez, L., Koss, A.R., Lerner, B.M., Gilman, J.B.: Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation. Atmos. Chem. Phys. 17, 13417–13438 (2017)

    Google Scholar 

  • Rolph, G., Stein, A., Stunder, B.: Real-time environmental applications and display sYstem: READY. Environ Model Softw. 95, 210–228 (2017). https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  • Rovelli, S., Cattaneo, A., Fazio, A., Spinazzè, A., Borghi, F., Campagnolo, D., Dossi, C., Cavallo, D.M.: VOCs measurements in residential buildings: quantification via thermal desorption and assessment of indoor concentrations in a case-study. Atmosphere. 10, 57 (2019)

    Google Scholar 

  • Rudolph, J.: The tropospheric distribution and budget of ethane. J. Geophys. Res. Atmos. 100, 11369–11381 (1995)

    Google Scholar 

  • Sahu, L.: Volatile organic compounds and their measurements in the troposphere. Current Science. 1645–1649. (2012) http://www.jstor.org/stable/24084821

  • Sahu, L., Lal, S., Venkataramani, S.: Seasonality in the latitudinal distributions of NMHCs over bay of Bengal. Atmos. Environ. 45, 2356–2366 (2011)

    Google Scholar 

  • Sahu, L., Pal, D., Yadav, R., Munkhtur, J.: Aromatic VOCs at major road junctions of a Metropolis in India: measurements using TD-GC-FID and PTR-TOF-MS instruments. Aerosol Air Qual. Res. 16, 2405–2420 (2016). https://doi.org/10.4209/aaqr.2015.11.0643

    Article  Google Scholar 

  • Sahu, L., Tripathi, N., Yadav, R.: Contribution of biogenic and photochemical sources to ambient VOCs during winter to summer transition at a semi-arid urban site in India. Environ. Pollut. 229, 595–606 (2017)

    Google Scholar 

  • Sahu, L., Tripathi, N., Yadav, R.: Observations of trace gases in Earth’s lower atmosphere: instrumentation and platform. Curr. Sci. 118, 1893 (2020a)

    Google Scholar 

  • Sahu, L., Yadav, R., Tripathi, N.: Aromatic compounds in a semi-urban site of western India: seasonal variability and emission ratios. Atmos. Res. 246, 105114 (2020b)

    Google Scholar 

  • Schade, G.W., Goldstein, A.H.: Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J. Geophys. Res. Atmos. 106, 3111–3123 (2001)

    Google Scholar 

  • Sharkey, T.D., Yeh, S.: Isoprene emission from plants. Annu. Rev. Plant Biol. 52, 407–436 (2001)

    Google Scholar 

  • Singh, U.K., Kumar, M., Chauhan, R., Jha, P., Ramanathan, A., Subramanian, V.: Assessment of the impact of landfill on groundwater quality: a case study of the Pirana site in western India. Environ. Monit. Assess. 141, 309–321 (2008). https://doi.org/10.1007/s10661-007-9897-6

    Article  Google Scholar 

  • Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015)

    Google Scholar 

  • Stewart, H.E., Hewitt, C., Bunce, R., Steinbrecher, R., Smiatek, G., Schoenemeyer, T.: A highly spatially and temporally resolved inventory for biogenic isoprene and monoterpene emissions: Model description and application to Great Britain. J. Geophys. Res.: Atmos. 108(D20), 4644 (2003). https://doi.org/10.1029/2002JD002694

  • Tan, J.-H., Guo, S.-J., Ma, Y.-L., Yang, F.-M., He, K.-B., Yu, Y.-C., Wang, J.-W., Shi, Z.-B., Chen, G.-C.: Non-methane hydrocarbons and their ozone formation potentials in Foshan, China. Aerosol Air Qual. Res. 12, 387–398 (2012). https://doi.org/10.4209/aaqr.2011.08.0127ccccc

    Article  Google Scholar 

  • Tang, J., Chan, L., Chang, C., Liu, S., Li, Y.: Characteristics and sources of non-methane hydrocarbons in background atmospheres of eastern, southwestern, and southern China. J. Geophys. Res.: Atmos. 114, (2009). https://doi.org/10.1029/2008JD010333

  • Tripathi, N., Sahu, L., Singh, A., Yadav, R., Karati, K.K.: High levels of isoprene in the marine boundary layer of the Arabian Sea during spring inter-monsoon: role of phytoplankton blooms. ACS Earth Space Chem. 4, 583–590 (2020a)

    Google Scholar 

  • Tripathi, N., Sahu, L., Singh, A., Yadav, R., Patel, A., Patel, K., Meenu, P.: Elevated levels of biogenic nonmethane hydrocarbons in the marine boundary layer of the Arabian sea during the intermonsoon. JJ Geophys Res: Atmos. 125, e2020JD032869 (2020b)

  • Tripathi, N., Sahu, L.K.: Emissions and atmospheric concentrations of α-pinene at an urban site of India: role of changes in meteorology. Chemosphere. 127071, 127071 (2020). https://doi.org/10.1016/j.chemosphere.2020.127071

    Article  Google Scholar 

  • Unger, N.: On the role of plant volatiles in anthropogenic global climate change. Geophys. Res. Lett. 41, 8563–8569 (2014). https://doi.org/10.1002/2014GL061616

    Article  Google Scholar 

  • Varshney, C., Singh, A.P.: Isoprene emission from indian trees. J. Geophys. Res.: Atmos. 108, (2003). https://doi.org/10.1029/2003JD003866

  • Velasco, E., Márquez, C., Bueno, E., Bernabé, R., Sánchez, A., Fentanes, O., Wöhrnschimmel, H., Cárdenas, B., Kamilla, A., Wakamatsu, S.: Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys. 8, 3061–3079 (2008)

    Google Scholar 

  • Wang, J.-L., Chew, C., Chang, C.-Y., Liao, W.-C., Lung, S.-C.C., Chen, W.-N., Lee, P.-J., Lin, P.-H., Chang, C.-C.: Biogenic isoprene in subtropical urban settings and implications for air quality. Atmos. Environ. 79, 369–379 (2013)

    Google Scholar 

  • Wellburn, F., Wellburn, A.: Variable patterns of antioxidant protection but similar ethene emission differences in several ozone-sensitive and ozone-tolerant plant selections. Plant Cell Environ. 19, 754–760 (1996)

    Google Scholar 

  • Yadav, R., Sahu, L., Tripathi, N., Pal, D., Beig, G., Jaaffrey, S.: Investigation of emission characteristics of NMVOCs over urban site of western India. Environ. Pollut. 252, 245–255 (2019). https://doi.org/10.1016/j.envpol.2019.05.089

    Article  Google Scholar 

  • Zemankova, K., Brechler, J.: Emissions of biogenic VOC from forest ecosystems in Central Europe: estimation and comparison with anthropogenic emission inventory. Environ. Pollut. 158, 462–469 (2010)

  • Zimmerman, P., Greenberg, J., Westberg, C.: Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer. J. Geophys. Res. Atmos. 93, 1407–1416 (1988)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sanjeev Kumar, Dr. Niharika Sharma from PRL and Mr. K. Suresh from CSIR-NIO for their supports during the field campaign. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov), and the National Centers for Environmental Prediction (NCEP) Reanalysis 1 project data (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html used in this publication.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript is written by Nidhi Tripathi. Dr. Lokesh Sahu has designed the experiment and suggested the corrections in the manuscript.

Corresponding author

Correspondence to L. K. Sahu.

Ethics declarations

Competing interests

The coauthor has no objection to publish this research work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The first study reporting the measurements of light alkenes in the forested Western Ghats of India

Large biogenic emissions of BVOCs in the form of alkenes from tropical evergreen forests

The strong dependence of isoprene emission on local weather conditions

Implications of tropical biogenic emissions on regional atmospheric chemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, N., Sahu, L.K., Patel, K. et al. Ambient air characteristics of biogenic volatile organic compounds at a tropical evergreen forest site in Central Western Ghats of India. J Atmos Chem 78, 139–159 (2021). https://doi.org/10.1007/s10874-021-09415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-021-09415-y

Keywords

Navigation