Skip to main content
Log in

An experimental study of heat transfer enhancement with winglets inside a tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The thermal enhancement and pressure drop in a circular tube with radially-arrayed winglet vortex generator (VG) mounted inside at different orientations were experimentally studied. A series of four winglet rings containing VGs were on the inner surface of the tube at different sections. The effects of winglet attack angles β (0–45°), pitch ratios PR (1.6–4.8), porosity ratio γ (0–20%), winglet length L (10–20 mm), and inclination angle α (0–30°) on heat transfer and pressure drop characteristics were carefully examined. The study was carried out at Reynolds numbers (Re) ranging from 6 × 103 to 2.7 × 104 nestling in the turbulent flow regime. Results showed a significant effect of the winglets on the heat transfer enhancement and pressure penalty compared to the smooth tube. Experiments further revealed that as the length or attack angle of winglets increased, both Nusselt number (Nu) and friction factor (f) were intensified. When it turned to pitch ratio and inclination angle of winglets, the trend became adverse. By comparing the contribution of different winglet parameters, it is preferable to optimize the pitch ratio (PR) other than length, inclination angle (α) nor attack angle (β) for a higher thermal enhancement. The case of small porosity ratio (γ = 10%) at a low Re yields the maximum thermal enhancement of 1.26. Empirical correlations for Nu and f were generated for the winglets based on experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A [m2]:

Lateral area of the duct

Cp [Jkg-1K-1)]:

Capacity

D [m]:

Diameter of the duct

f [-]:

Friction factor

H [m]:

Height of winglet vortex generator

h [Wm-2K-1]:

Convective heat transfer coefficient

I [A]:

Current

k [Wm-1K-1]:

Thermal conductivity

L [m]:

Length of vortex generator

l [m]:

Length of test section

\( \dot{m} \) [kgs-1]:

Mass flow rate

Nu [-]:

Nusselt number

P [m]:

Pitch

PR [-]:

Pitch ratio

P [Pascal]:

Pressure drop

Pr [-]:

Prandtl number

Q [J]:

Heat

R :

Result function

δR :

Error of result

Re [-]:

Reynolds number

T [K]:

Temperature

t [m]:

Tube thickness

U [ms-1]:

Velocity

V [volt]:

Voltage

\( \dot{V} \) [m3s-1]:

Volumetric flow rate

X :

Independent variable

δX :

Error of independent variable

\( \overline{X} \) :

Averaged variable

α [°]:

Inclination angle

β [°]:

Attack angle

γ [-]:

Porosity ratio

ρ [kgm-3]:

Density

υ [m2s-1]:

Kinematic viscosity

b :

bulk

conv :

Convective

D :

Duct

i :

index

in :

Inlet

loss :

Heat loss

out :

Outlet

O :

Smoothduct

pp :

Pump power

s :

Surface

References

  1. Ligrani PM, Oliveira MM, Blaskovich T (2003) Comparison of heat transfer augmentation techniques. AIAA J 41:337–362. https://doi.org/10.2514/2.1964

    Article  Google Scholar 

  2. Ghanem A, Habchi C, Lemenand T et al (2013) Energy efficiency in process industry - high-efficiency vortex (HEV) multifunctional heat exchanger. Renew Energy 56:96–104. https://doi.org/10.1016/j.renene.2012.09.024

    Article  Google Scholar 

  3. Anxionnaz Z, Cabassud M, Gourdon C, Tochon P (2008) Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art. Chem Eng Process Process Intensif 47:2029–2050. https://doi.org/10.1016/j.cep.2008.06.012

    Article  Google Scholar 

  4. Thakur RK, Vial C, Nigam KDP et al (2003) Static mixers in the process industries - a review. Chem Eng Res Des 81:787–826. https://doi.org/10.1205/026387603322302968

    Article  Google Scholar 

  5. Oneissi M, Habchi C, Russeil S et al (2016) Novel design of delta winglet pair vortex generator for heat transfer enhancement. Int J Therm Sci 109:1–9. https://doi.org/10.1016/j.ijthermalsci.2016.05.025

    Article  Google Scholar 

  6. Khanjian A, Habchi C, Russeil S et al (2017) Effect of rectangular winglet pair roll angle on the heat transfer enhancement in laminar channel flow. Int J Therm Sci 114:1–14. https://doi.org/10.1016/j.ijthermalsci.2016.12.010

    Article  Google Scholar 

  7. Biswas G, Torii K, Nishino K (1996) Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Int J Heat Mass Transf 39:3441–3451. https://doi.org/10.1016/0017-9310(95)00398-3

    Article  Google Scholar 

  8. Jedsadaratanachai W, Jayranaiwachira N, Promvonge P (2015) 3D numerical study on flow structure and heat transfer in a circular tube with V-baffles. Chinese J Chem Eng 23:342–349. https://doi.org/10.1016/j.cjche.2014.11.006

    Article  MATH  Google Scholar 

  9. Yakut K, Sahin B, Celik C et al (2005) Effects of tapes with double-sided delta-winglets on heat and vortex characteristics. Appl Energy 80:77–95. https://doi.org/10.1016/j.apenergy.2004.03.003

    Article  Google Scholar 

  10. Zhou G, Ye Q (2012) Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng 37:241–248. https://doi.org/10.1016/j.applthermaleng.2011.11.024

    Article  Google Scholar 

  11. Promvonge P, Tamna S, Pimsarn M, Thianpong C (2015) Thermal characterization in a circular tube fitted with inclined horseshoe baffles. Appl Therm Eng 75:1147–1155. https://doi.org/10.1016/j.applthermaleng.2014.10.045

    Article  Google Scholar 

  12. Noothong W, Suwannapan S, Thianpong C, Promvonge P (2015) Enhanced heat transfer in a heat exchanger square-duct with discrete V-finned tape inserts. Chinese J Chem Eng 23:490–498. https://doi.org/10.1016/j.cjche.2014.05.018

    Article  Google Scholar 

  13. Islam MD, Oyakawa K, Yaga M, Kubo I (2009) The influence of channel height on heat transfer enhancement of a co-angular type rectangular finned surface in narrow channel. Int J Therm Sci 48:1639–1648

    Article  Google Scholar 

  14. Islam MD, Oyakawa K, Yaga M, Kubo I (2009) The effects of duct height on heat transfer enhancement of a co-rotating type rectangular finned surface in duct. Exp Thermal Fluid Sci 33:348–356. https://doi.org/10.1016/j.expthermflusci.2008.10.005

    Article  Google Scholar 

  15. Didarul IM, Kenyu O, Minoru Y, Izuru S (2007) Study on heat transfer and fluid flow characteristics with short rectangular plate fin of different pattern. Exp Thermal Fluid Sci 31:367–379. https://doi.org/10.1016/j.expthermflusci.2006.05.009

    Article  Google Scholar 

  16. Islam MD, Oyakawa K, Yaga M (2008) Heat transfer enhancement from a surface affixed with rectangular fins of different patterns and arrangement in duct flow. J Enhanc Heat Transf:15

  17. Islam MD, Oyakawa K, Kubo I (2009) Visualization of flow pattern and thermal image analysis of enhanced heat transfer surface. Heat Mass Transf 45:511–517

    Article  Google Scholar 

  18. Oyakawa K, Didarul IM, Yaga M (2006) Fluid flow and infrared image analyses on endwall fitted with short rectangular plate fin. J Therm Sci 15:145

    Article  Google Scholar 

  19. Habchi C, Lemenand T, Della D et al (2011) Entropy production and field synergy principle in turbulent vortical flows. Int J Therm Sci 50:2365–2376. https://doi.org/10.1016/j.ijthermalsci.2011.07.012

    Article  Google Scholar 

  20. Tiggelbeck S, Mitra N, Fiebig M (1992) Flow structure and heat transfer in a channel with multiple longitudinal vortex generators. Exp Thermal Fluid Sci 5:425–436. https://doi.org/10.1016/0894-1777(92)90029-5

    Article  Google Scholar 

  21. Tang LH, Tan SC, Gao PZ, Zeng M (2016) Parameters optimization of fin-and-tube heat exchanger with a novel vortex generator fin by Taguchi method. Heat Transf Eng 37:369–381. https://doi.org/10.1080/01457632.2015.1052715

    Article  Google Scholar 

  22. Sanders PA, Thole KA (2006) Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers. 49:4058–4069. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.036

  23. Skullong S, Promvonge P, Thianpong C, Pimsarn M (2016) Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators. Appl Therm Eng 100:611–620. https://doi.org/10.1016/j.applthermaleng.2016.01.107

    Article  Google Scholar 

  24. Webb RL (1981) Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf 24:715–726. https://doi.org/10.1016/0017-9310(81)90015-6

    Article  Google Scholar 

  25. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  26. Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons

  27. Habchi C, Harion JL (2014) Residence time distribution and heat transfer in circular pipe fitted with longitudinal rectangular wings. Int J Heat Mass Transf 74:13–24. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.007

    Article  Google Scholar 

  28. Joshi P, Nigam KDP, Nauman EB (1995) The Kenics static mixer: new data and proposed correlations. Chem Eng J Biochem Eng J 59:265–271. https://doi.org/10.1016/0923-0467(94)02948-2

    Article  Google Scholar 

  29. Chompookham T, Thianpong C, Kwankaomeng S, Promvonge P (2010) Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators. Int Commun Heat Mass Transf 37:163–169. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.012

    Article  Google Scholar 

  30. Rahimi M, Shabanian SR, Alsairafi AA (2009) Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process Process Intensif 48:762–770. https://doi.org/10.1016/j.cep.2008.09.007

    Article  Google Scholar 

  31. Eiamsa-ard S, Promvonge P (2006) Experimental investigation of heat transfer and friction characteristics in a circular tube fitted with V-nozzle turbulators. Int Commun Heat Mass Transf 33:591–600. https://doi.org/10.1016/j.icheatmasstransfer.2006.02.022

    Article  MATH  Google Scholar 

  32. Li HZ, Fasol C, Choplin L (1997) Pressure drop of newtonian and non-newtonian fluids across a sulzer SMX static mixer. Chem Eng Res Des 75:792–796. https://doi.org/10.1205/026387697524461

    Article  Google Scholar 

  33. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P (2010) Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Commun Heat Mass Transf 37:39–46. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.010

    Article  MATH  Google Scholar 

  34. Promvonge P, Thianpong C (2008) Thermal performance assessment of turbulent channel flows over different shaped ribs. Int Commun Heat Mass Transf 35:1327–1334. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.016

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Khalifa University of Science and Technology, Abu Dhabi, UAE and the Petroleum Institute, Abu Dhabi (Research Grant: RIFP 15322-2015) for the completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Islam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Islam, M., Alam, M.M. et al. An experimental study of heat transfer enhancement with winglets inside a tube. Heat Mass Transfer 57, 1223–1234 (2021). https://doi.org/10.1007/s00231-021-03021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03021-0

Keywords

Navigation