Skip to main content
Log in

Steady rheological properties of a magnetorheological fluid from mining waste

  • Regular papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetorheological fluids have a viscosity which can be controlled by the application of magnetic field. Usually they have dispersions of magnetic particles with size micrometric in a carrier liquid. After purification process, extracted material from mining waste allowed us to obtain the magnetite that was used as the magnetic component of a magnetorheological fluid. The carrier continuous medium for such fluid was 2.5 and 20 W oils. These oils are used for damping systems in high-performance motorcycles and are readily available. The magnetics particle’s size ranged from 2 to 100 µm. Magnetic fields from 50 to 1200 gauss, as well as structural, morphological, and rheological studies were performed to the analyzed fluids. We observed that the model that best fits the stress vs. shear rate curves was the Herschel–Bulkley model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.M. Winslow, Induced Fibration of Suspensions.  J. Appl. Phys. 20, 1137 (1949)

    Article  ADS  Google Scholar 

  2. J. Rabinow, The magnetic fluid Clutch. J. AIEE Trans. 67, 1308 (1948)

    Google Scholar 

  3. J.D. Carlson, in Proceedings of the 7th International Conference on ER fluids and MR suspensions, 2000, ed. by R. Tao (World Scientific Singapore), pp. 621–628

  4. H.J. Choi, M.S. Jhon, Electrorheology of polymers and nanocomposites. Soft Matter 5, 1562 (2009)

    Article  ADS  Google Scholar 

  5. Q. Cheng, V. Pavlinek, Y. He, A. Lengalova, C. Li, P. Saha, Structural and eletrorheological properties of mesoporous silica modified with triethanolamine. Colloids Surf. A: Physicochem. Eng. Aspects 318, 169 (2008)

    Article  Google Scholar 

  6. P. Hiamtup, A. Sirivat, A.M. Jamieson, Hysteresis and strain hardening in the creep response of a polyaniline ER fluid. J. Colloid Interf. Sci. 325, 122 (2008)

    Article  ADS  Google Scholar 

  7. F.F. Fang, B.M. Lee, H.J. Choi, Electrorheologically intelligent polyaniline and its composites. Macromol. Res. 18, 99 (2010)

    Article  Google Scholar 

  8. H.J. Choi, J.W. Kim, K. To, Synthesis and electrorheological behavior of semiconducting poly(aniline-co-o-ethoxyaniline). Synth. Met. 101, 697 (1999)

    Article  Google Scholar 

  9. J.L. Carrillo, F. Donado, M.E. Mendoza, Fractal patterns, cluster dynamics, and elastic properties of magnetorheological suspensions. Phys. Rev. E 68, 061509 (2003)

    Article  ADS  Google Scholar 

  10. J.L. Carrillo, M.E. Mendoza, F. Donado, Fractal patterns and aggregation processes in rheological dispersions. J. Stat. Mech. 2005(06), P06001 (2005)

    Google Scholar 

  11. T. Ukai, T. Maekawa, Patterns formed by paramagnetic particles in a horizontal layer of a magnetorheological fluid subjected to a dc magnetic field. Phys. Rev. E 69, 032501 (2004) 

    Article  ADS  Google Scholar 

  12. E.M. Furst, A.P. Gast, Micromechanics of magnetorheological suspensions. Phys. Rev. E 61 (2000) 6732. Dynamics and lateral interactions of dipolar chains. Phys. Rev. E. 62, 6916 (2000)

    Article  ADS  Google Scholar 

  13. Y. Nagaoka, H. Morimoto, T. Maekawa, Dynamics of disklike clusters formed in a magnetorheological fluid under a rotational magnetic field. Phys. Rev. E 71, 032502 (2005)  

    Article  ADS  Google Scholar 

  14. R. Tao, Super-strong magnetorheological fluids. J. Phys.: Condens. Matter 13, R979 (2001)

  15. F. Donado, J.L. Carrillo, M.E. Mendoza, Sound propagation in magneto-rheological suspensions. J. Phys. Condens. Matter 14(9), 2153–2157 (2002)

    Article  ADS  Google Scholar 

  16. B.O. Park, K.H. Song, B.J. Park, H.J. Choi, Miniemulsion fabricated Fe3O4/poly (methyl methacrylate) composite particles and their magnetorheological characteristics. J. Appl. Phys. 107, 09A506 (2010)

    Article  Google Scholar 

  17. X. Tang, X. Zhang, R. Tao, Y. Rong, Structure-enhanced yield stress of magnetorheological fluids. J. Appl. Phys. 87, 2634 (2000)

    Article  ADS  Google Scholar 

  18. I.B. Jang, H.B. Kim, J.Y. Lee, J.L. You, H.J. Choi, M.S. Jhon, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97, 10Q912 (2005)

    Article  Google Scholar 

  19. J. De Vicente, M.T. López-López, J.D.G. Durán, F. González-Caballero, Shear flow behaviour of confined magnetorheological fluids at low magnetic field strengths. Rheol. Acta 44, 94 (2004)

    Article  Google Scholar 

  20. X.Z. Zhang, X.L. Gong, P.Q. Zhang, Q.M. Wang, Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids. J. Appl. Phys. 96, 2359 (2004)

    Article  ADS  Google Scholar 

  21. M.S. Cho, S.T. Lim, I.B. Jang, H.J. Choi, M.S. John, Encapsulation of spherical iron particle with PMMA and by its magnetorheological particles. IEEE Trans. Magn. 40, 3036 (2004)

    Article  ADS  Google Scholar 

  22. F.F. Fang, H.J. Choi, Polymeric nanobead coated carbonyl iron particles and their magnetic property. Phys. Stat. Sol. (a) 204, 4190 (2007)

    Article  ADS  Google Scholar 

  23. F.F. Fang, H.J. Choi, Noncovalent self-assembly of carbon nanotube wrapped carbonyl iron particles and their magnetorheology. J. Appl. Phys. 103, 07A301 (2008)

    Article  Google Scholar 

  24. Pradeep P Phulé, Magnetorheological (MR) fluids: Principles and applications Smart Materials. Bulletin Feb/ 2001.

  25. J.M. Ginder, L.C. Davis, L.D. Elie, Rheology of magnetorheological fluids: Models and measurements. Int. J. Mod. Phys. B 10, 3293  (1996)

    Article  ADS  Google Scholar 

  26. S. Genc, B. Derin, Synthesis and rheology of ferrofluids: a review. Curr. Opin. Chem. Eng. 3, 118–124 (2014). https://doi.org/10.1016/j.coche.2013.12.006

    Article  Google Scholar 

  27. M.T. López-López, P. Kuzhir, G. Bossis, P. Mingalyov, Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol. Acta 47(7), 787–796 (2008)

    Article  Google Scholar 

  28. M. Jessica, P. Tomáš, K. Pavel, Iron–sepiolite magnetorheological fluids with improved performances. J. Rheol. 63(1), 125–139 (2019)

    Article  Google Scholar 

  29. F. Imaduddin, S.A. Mazlan, H. Zamzuri, A design and modelling review of rotary magnetorheological damper. Mater. Des. 51, 575–591 (2013)

    Article  Google Scholar 

  30. R. Stanway, J.L. Sproston, N.G. Stevens, Non-linear modeling of an electro-rheological vibration damper. J. Electrostatics 20, 167–184 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Saldarriaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 4

Table 4 Parameters and adjustment for Herschel–Bulkley and Bingham models in two FMR

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quitian, G., Saldarriaga, W. & Rojas, N. Steady rheological properties of a magnetorheological fluid from mining waste. Appl. Phys. A 127, 149 (2021). https://doi.org/10.1007/s00339-020-04221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04221-x

Keywords

Navigation