Skip to main content
Log in

Embeddedness, convexity, and rigidity of hypersurfaces in product spaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We establish the following Hadamard–Stoker-type theorem: Let \(f:M^n\rightarrow \mathscr{H} ^{\,\,\, n}\times \mathbb{R}\) be a complete connected hypersurface with positive definite second fundamental form, where  \(\mathscr{H} ^{\,\,\, n}\) is a Hadamard manifold. If the height function of f has a critical point, then it is an embedding and M is homeomorphic to \(\mathbb{S}^n\) or \(\mathbb{R}^n.\) Furthermore,  f(M)  bounds a convex set in  \(\mathscr{H} ^{\,\,\, n}\times \mathbb{R}.\)  In addition, it is shown that, except for the assumption on convexity, this result is valid for hypersurfaces in  \(\mathbb{S}^n\times \mathbb{R}\)  as well. We apply these theorems to show that a compact connected hypersurface in  \(\mathbb{Q}_{\epsilon}^{n}\times \mathbb{R}\)  (\(\epsilon =\pm 1\)) is a rotational sphere, provided it has either constant mean curvature and positive-definite second fundamental form or constant sectional curvature greater than \((\epsilon +1)/2.\) We also prove that, for  \(\bar{M}=\mathscr{H} ^{\,\,\, n} \,{\mathrm{or}} \,\, \mathbb{S}^n,\)  any connected proper hypersurface  \(f:M^n\rightarrow \bar{M}^n \times \mathbb{R}\)  with positive semi-definite second fundamental form and height function with no critical points is embedded and isometric to  \(\Sigma ^{n-1}\times \mathbb{R},\)  where  \(\Sigma ^{n-1}\subset \bar{M}^n\)  is convex and homeomorphic to  \(\mathbb{S}^{n-1}\)  (for  \(\bar{M}^n=\mathscr{H} ^{\,\,\, n}\)  we assume further that  f  is cylindrically bounded). Analogous theorems for hypersurfaces in warped product spaces  \(\mathbb{R}\times _\varrho \mathscr{H} ^{n}\)  and  \(\mathbb{R}\times _\varrho \mathbb{S}^{n}\)  are obtained. In all of these results, the manifold  \(M^{n}\) is assumed to have dimension  \(n\ge 3.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abresch, U., Rosenberg H.: A Hopf differential for constant mean curvature surfaces in \({\mathbb{S}}^2\times {\mathbb{R}}\) and \({\mathbb{H}}^2\times {\mathbb{R}}.\) Acta Math. 193 141–174 (2004)

  2. Aledo, J., Espinar, J., Glvez, J.: Complete surfaces of constant curvature in  \({\mathbb{H}}^2\times {\mathbb{R}}\)  and  \({\mathbb{S}}^2\times {\mathbb{R}}.\)  Calc. Var. 29, 347–363 (2007)

  3. Alexander, S.: Locally convex hypersurfaces of negatively curved spaces. Proc. Am. Math. Soc. 64, 321–325 (1977)

    Article  MathSciNet  Google Scholar 

  4. Bishop, R. L.: Infinitesimal convexity implies local convexity, Indiana Univ. Math. J. 24, 169–172 (1974/75)

  5. Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, 1–49 (1969)

    Article  MathSciNet  Google Scholar 

  6. Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. of Math. 96(3), 413–443 (1972)

    Article  MathSciNet  Google Scholar 

  7. Cheng, X., Rosenberg, H.: Embedded positive constant r-mean curvature hypersurfaces in \(M^m\times {\mathbb{R}}.\) Anais da academia brasileira de cincias, 77, 183–199 (2005)

  8. Currier, R.J.: On hypersurfaces of hyperbolic space infinitesimally supported by horospheres. Trans. Am. Math. Soc. 313, 419–431 (1989)

    Article  MathSciNet  Google Scholar 

  9. Dajczer, M., Rodrguez, L.: Rigidity of real Kähler submanifolds. Duke Math. J. 53, 211–220 (1986)

    Article  MathSciNet  Google Scholar 

  10. Daniel, B.: Isometric immersions into \({\mathbb{S}}^n\times {\mathbb{R}}\) and \({\mathbb{H}}^n\times {\mathbb{R}}\) and applications to minimal surfaces. Trans. Amer. Math. Soc. 361(12), 6255–6282 (2009)

    Article  MathSciNet  Google Scholar 

  11. de Lima, R.F., de Andrade, R.L.: Convexity, rigidity, and reduction of codimension of isometric immersions into space forms. Bull. Braz. Math. Soc. 50, 119–136 (2019)

    Article  MathSciNet  Google Scholar 

  12. Immersions of manifolds with non-negative sectional curvatures: do Carmo, M., Lima, E. Bol. Soc. Brasil. Mat. 2, 9–22 (1971)

    MathSciNet  Google Scholar 

  13. Rigidity and convexity of hypersurfaces in spheres: do Carmo, M., Warner, F. J. Diff. Geom. 4, 133–144 (1970)

    Article  Google Scholar 

  14. Espinar, J., Glvez, A.: Rosenberg, H.: Complete surfaces with positive extrinsic curvature in product spaces, Comment. Math. Helv. 84, 351–386 (2009)

  15. Espinar, J., de Oliveira, I.: Locally convex surfaces immersed in a Killing submersion, Bull. Braz. Math. Soc., New Series, 44 (1), 155–171 (2013)

  16. Espinar, J., Rosenberg, H.: When strictly locally convex hypersurfaces are embedded. Math. Z. 271, 1075–1090 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hadamard, J.: Sur certaines proprietés des trajectoires en dynamique. J. Math. Pures Appl. 3, 331–387 (1897)

    MATH  Google Scholar 

  18. Hadamard, J.: Les surfaces à courbure opposées et leurs lignes géodesique. J. Math. Pures Appl. 4, 27–73 (1898)

    MATH  Google Scholar 

  19. Heijenoort, J.: On locally convex manifolds. Comm. on Pure and appl. math. 5, 223–242 (1952)

    Article  MathSciNet  Google Scholar 

  20. Hsiang, W-T., Hsiang, W-y.: On the uniqueness of isoperimetric solutions and imbedded soap bubbles in non-compact symmetric spaces, I, Invent. math. 98, 39–58 (1989)

  21. Lawn, M.-A., Ortega, M.: A fundamental theorem for hypersurfaces in semi-Riemannian warped products. J. Geom. Phys. 90, 55–70 (2015)

    Article  MathSciNet  Google Scholar 

  22. Leandro, B., Pina, R., Santos, J. P.: Einstein hypersurfaces of  \({\mathbb{S}}^n\times {\mathbb{R}}\) and \({\mathbb{H}}^n\times {\mathbb{R}}.\) To appear in Bulletin of the Brazilian Mathematical Society (2020). arXiv:1910.06930)

  23. Manfio, F., Tojeiro, R.: Hypersurfaces with constant sectional curvature of \({\mathbb{S}}^n\times {\mathbb{R}}\) and \({\mathbb{H}}^n\times {\mathbb{R}}.\) Illinois J. Math. 55, 397–415 (2011)

  24. Milnor, J.: Morse Theory. Annals of Mathematics Studies (1973)

  25. Oliveira, I., Schweitzer, S.: Locally convex hypersurfaces immersed in  \(H^n\times {\mathbb{R}}.\)  Geom Dedicata 188, 17–32 (2017)

  26. O’Neill, B.: Semi-Riemannian geometry. Academic Press, Cambridge (1983)

    MATH  Google Scholar 

  27. Pedrosa, R.: The isoperimetric problem in spherical cylinders. Ann. Glob. Anal. and Geom. 26, 333–354 (2004)

    Article  MathSciNet  Google Scholar 

  28. Perelman, T.: Proof of the soul conjecture of Cheeger and Gromoll. J. Differential Geom. 40, 209–212 (1994)

    Article  MathSciNet  Google Scholar 

  29. Rosenberg, H., Tribuzy, R.: Rigidity of convex surfaces in the homogeneous spaces. Bull. Sci. math. 136, 892–898 (2012)

    Article  MathSciNet  Google Scholar 

  30. Sacksteder, R.: On hypersurfaces with no negative sectional curvatures. Amer. J. Math. 82, 609–630 (1960)

    Article  MathSciNet  Google Scholar 

  31. Sacksteder, R.: The rigidity of hypersurfaces. J. Math. Mech. 11, 929–940 (1962)

    MathSciNet  MATH  Google Scholar 

  32. Spivak, M.: A comprehensive introduction to differential geometry -, vol. IV. Publish or Perish (1979)

  33. Stoker, J.: Über die Gestalt der positiv gekrümmten offenen Flächen im dreidimensionalen Raume. Compositio Math. 3, 55–88 (1936)

    MathSciNet  MATH  Google Scholar 

  34. Tojeiro, R.: On a class of hypersurfaces in \({\mathbb{S}}^n\times {\mathbb{R}}\) and \({\mathbb{H}}^n\times {\mathbb{R}}\). Bull. Braz. Math. Soc. 41, 199–209 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to Fernando Manfio and Ruy Tojeiro for valuable suggestions which improved some results in this paper. We would also like to thank Luis Florit and João Paulo dos Santos for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Freire de Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, R.F. Embeddedness, convexity, and rigidity of hypersurfaces in product spaces. Ann Glob Anal Geom 59, 319–344 (2021). https://doi.org/10.1007/s10455-020-09745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-020-09745-2

Keywords

Mathematics Subject Classification

Navigation