Skip to main content
Log in

On Generalized Complete (p, q)-Elliptic Integrals

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the generalized complete (p, q)-elliptic integrals of the first and second kind as an application of generalized trigonometric functions with two parameters, and establish the monotonicity, generalized convexity and concavity of these functions. In particular, some Turán type inequalities are given. Finally, we also show some new series representations of these functions by applying Alzer and Richard’s methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer H, Richard K C. Series representation for special functions and mathematical constants. Ramanujan J, 2016, 40: 291. https://doi.org/10.1007/s11139-015-9679-7

    Article  MathSciNet  Google Scholar 

  2. Anderson G D, Qiu S -L, Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals and modular equation. Pacific J Math, 2000, 192(1): 1–37

    Article  MathSciNet  Google Scholar 

  3. Anderson G D, Qiu S -L, Vamanamurthy M K, Vuorinen M. Conformal invariants, inequalities and quasiconformal Maps. J Wiley, 1997

  4. Baricz Á. Geometrically concave univariate distributions. J Math Anal Appl, 2010, 363(1): 182–196

    Article  MathSciNet  Google Scholar 

  5. Baricz Á. Turán type inequalities for hypergeometric functions. Proc Amer Math Soc, 2008, 136(9): 3223–3229

    Article  MathSciNet  Google Scholar 

  6. Baricz Á, Bhayo B A, Pogány T K. Functional inequalities for generalized inverse trigonometric and hyperbolic functions. J Math Anal Appl, 2014, 417: 244–259

    Article  MathSciNet  Google Scholar 

  7. Baricz Á, Bhayo B A, Vuorinen M. Turán type inequalities for generalized inverse trigonometric functions. Filomat, 2015, 19(2): 303–313

    Article  Google Scholar 

  8. Baricz Á, Jankov D, Pogány T K. Turán type inequalities for Krätzel functions. J Math Anal Appl, 2012, 388(2): 716–724

    Article  MathSciNet  Google Scholar 

  9. Berndt B C, Bhargava S, Garvan F G. Ramanujan’s theories of elliptic functions to alternative bases. Trans Amer Math Soc, 1995, 347(11): 4163–4244

    MathSciNet  MATH  Google Scholar 

  10. Bhayo B A, Sándor J. Inequalities connecting generalized trigonometric functions with their inverses. Probl Anal Issues Anal, 2013, 20(2): 82–90

    Article  MathSciNet  Google Scholar 

  11. Bhayo B A, Vuorinen M. On generalized trigonometric functions with two parameters. J Approx Theory, 2012, 164: 1415–1426

    Article  MathSciNet  Google Scholar 

  12. Bhayo B A, Vuorinen M. Inequalities for eigenfunctions of the p-Laplacian. Issues of Analysis, 2013, 20(2): 13–35

    Article  Google Scholar 

  13. Bhayo B A, Vuorinen M. On generalized complete elliptic integrals and modular functions. Proc Edinb Math Soc, 2012, 55: 591–611

    Article  MathSciNet  Google Scholar 

  14. Bushell P J, Edmunds D E, Remarks on generalised trigonometric functions. Rocky Mountain J Math, 2012, 42: 13–52

    Article  Google Scholar 

  15. Wang M -K, Chu Y -M, Qiu S -L, Jiang Y -P. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J Math Anal Appl, 2012, 388(2): 1141–1146

    Article  MathSciNet  Google Scholar 

  16. Drábek P, Manásevich R. On the closed solution to some p-Laplacian nonhomogeneous eigenvalue problems. Diff and Int Eqns, 1999, 12: 723–740

    MATH  Google Scholar 

  17. Edmunds D E, Gurka P, Lang J. Properties of generalized trigonometric functions. J Approx Theory, 2012, 164: 47–56

    Article  MathSciNet  Google Scholar 

  18. Heikkala V, Lindáen H, Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals and the Legendre M-function. J Math Anal Appl, 2008, 338: 223–243. arXiv:math/0701438

    Article  MathSciNet  Google Scholar 

  19. Huang T -R, Tan S -Y, Ma X -Y, Chu Y -M. Monotonicity properties and bounds for the complete p-elliptic integrals. J Inequal Appl, 2018, 2018. Article ID 239, 11 pages

  20. Kamiya T, Takeuchi S. Complete (p, q)-elliptic integrals with application to a family of means. J Classical Anal, 2017, 10(1): 15–25. doi:https://doi.org/10.7153/jca-10-02

    Article  MathSciNet  Google Scholar 

  21. Lindqvist L. Some remarkable sine and cosine functions. Ricerche di Matematica, 1995, 44: 269–290

    MathSciNet  MATH  Google Scholar 

  22. Neuman E. Some properties of the generalized Jacobian elliptic functions. Integral Transform Spec Funct, 2015, 26(7): 498–506

    Article  MathSciNet  Google Scholar 

  23. Neuman E. Inequalities for the generalized trigonometric, hyperbolic and Jacobian elliptic functions. J Math Inequal, 2015, 9(3): 709–726

    Article  MathSciNet  Google Scholar 

  24. Neuman E. Some properties of the generalized Jacobian elliptic functions II. Integral Transforms Spec Funct, 2016, 27(2): 101–110

    Article  MathSciNet  Google Scholar 

  25. Neuman E. Some properties of the generalized Jacobian elliptic functions III. Integral Transforms Spec Funct, 2016, 27(10): 824–834

    Article  MathSciNet  Google Scholar 

  26. Qian W -M, He Z -Y, Chu Y -M. Approximation for the complete elliptic integral of the first kind. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114 (2): Article ID 57, 12 pages. https://doi.org/10.1007/s13398-020-00784-9

  27. Slater L J. Generalized hypergeometric functions. Cambridge: Cambridge University Press, 1966

    MATH  Google Scholar 

  28. Takeuchi S. Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J Math Anal Appl, 2012, 385: 24–35

    Article  MathSciNet  Google Scholar 

  29. Takeuchi S. A new form of the generalized complete elliptic integrals. Kodai Math J, 2016, 39(1): 202–226

    Article  MathSciNet  Google Scholar 

  30. Takeuchi S. Legendre-type relations for generalized complete elliptic integrals. J Classical Anal, 2016, 9(1): 35–42. doi:https://doi.org/10.7153/jca-09-04

    Article  MathSciNet  Google Scholar 

  31. Wang M -K, Chu H -H, Chu Y -M. Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J Math Anal Appl, 2019, 480 (2): Article ID 123388, 9 pages

  32. Wang M-K, Chu Y -M, Qiu Y -F, Qiu S -L. An optimal power mean inequality for the complete elliptic integrals. Appl Math Lett, 2011, 24(6): 887–890

    Article  MathSciNet  Google Scholar 

  33. Wang M -K, He Z -Y, Chu Y -M. Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind. Comput Methods Funct Theory, 2020, 20(1): 111–124

    Article  MathSciNet  Google Scholar 

  34. Wang M -K, Hong M -Y, Xu Y -F, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal, 2020, 14(1): 1–21

    Article  MathSciNet  Google Scholar 

  35. Wang M -K, Qiu S -L, Chu Y -M, Jiang Y-P. Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J Math Anal Appl, 2012, 385(1): 221–229

    Article  MathSciNet  Google Scholar 

  36. Wang G -D, Zhang X -H, Chu Y -M. A power mean inequality involving the complete elliptic integrals. Rocky Mountain J Math, 2014, 44(5): 1661–1667

    Article  MathSciNet  Google Scholar 

  37. Wang M -K, Zhang W, Chu Y -M. Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Mathematica Scientia, 2019, 39B(5): 1440–1450

    Article  MathSciNet  Google Scholar 

  38. Yang Z -H, Chu Y -M. A monotonicity property involving the generalized elliptic integral of the first kind. Math Inequal Appl, 2017, 20(3): 729–735

    MathSciNet  MATH  Google Scholar 

  39. Yang Z -H, Qian W -M, Chu Y -M, Zhang W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J Math Anal Appl, 2018, 462(2): 1714–1726

    Article  MathSciNet  Google Scholar 

  40. Yang Z -H, Qian W -M, Zhang W, Chu Y -M. Notes on the complete elliptic integral of the first kind. Math Inequal Appl, 2020, 23(1): 77–93

    MathSciNet  MATH  Google Scholar 

  41. Yang Z -H, Qian W -M, Chu Y -M. Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math Inequal Appl, 2018, 21(4): 1185–1199

    MathSciNet  MATH  Google Scholar 

  42. Yin L, Huang L -G, Lin X -L, Wang Y -L. A survey for generalized trigonometric and hyperbolic functions. J Math Inequal, 2019, 13(3): 833–854

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yin.

Additional information

The first author was supported by the Natural Science Foundation of Shandong Province (ZR2019QA003 and ZR2018MF023), by the National Natural Science Foundation of China (11601036), and by the Major Project of Binzhou University (2020ZD02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Bhayo, B.A. & Göğüş, N.G. On Generalized Complete (p, q)-Elliptic Integrals. Acta Math Sci 41, 475–486 (2021). https://doi.org/10.1007/s10473-021-0211-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0211-4

Key words

2010 MR Subject Classification

Navigation