Skip to main content
Log in

Estimates of Anthropogenic CO2 Emissions for Moscow and St. Petersburg Based on OCO-2 Satellite Measurements

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

CO2 anthropogenic emissions are estimated for St. Petersburg and Moscow megacities based on OCO-2 satellite CO2 measurements. The CO2 emission rates for St. Petersburg amount to 80 and 74 t/km2 per day on March 1, 2016, and May 12, 2018, respectively. The CO2 emission rate for Moscow is estimated as 123, 179, and 186 t/km2 per day for August 25, 2018, June 22, 2018, and March 26, 2017, respectively. The comparison of our results with the estimates for other megacities has shown the emission estimates for St. Petersburg to be close to those for Los Angeles and Berlin, and estimates for Moscow to be close to those for London. The estimation errors are mainly caused by the anthropogenic contribution, which varies from 30 to ~90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. Mori, T. Hirahara, M. Ikegami, and T. J. Conway, Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Centre for Greenhouse Gases. GAW Report N 184 (WMO, 2009).

  2. A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to Evaluate and Improve Greenhouse Gas Emission Inventories, Ed. by T. Matsunaga and S. Maksyutov (Satellite Observation Center, National Institute for Environmental Studies, Japan, 2018).

    Google Scholar 

  3. L. Wu, G. Broquet, P. Ciais, V. Bellassen, F. Vogel, F. Chevallier, I. Xueref-Remy, and Y. Wang, “What would dense atmospheric observation networks bring to the quantification of city CO2 emissions?,” Atmos. Chem. Phys. 16 (12), 7743–7771 (2016).

    Article  ADS  Google Scholar 

  4. F. M. Hopkins, J. R. Ehleringer, S. E. Bush, R. M. Duren, C. E. Miller, C.-T. Lai, Y.-K. Hsu, V. Carranza, and J. T. Randerson, “Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies,” Earth’s Future 4 (9), 408–425 (2016).

    Article  ADS  Google Scholar 

  5. P. I. Palmer, “Quantifying sources and sinks of trace gases using space-borne measurements: Current and future science,” Phil. Trans. R. Soc. A 366 (1885), 4509–4528 (2008).

  6. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based data,” J. Geophys. Res. 112 (D10314) (2007).

  7. F. Deng, D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O' Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke, “Inferring regional sources and sinks of atmospheric CO2 from GOSAT data,” Atmos. Chem. Phys. 14 (7), 3703–3727 (2014).

    Article  ADS  Google Scholar 

  8. L. Feng, P. I. Palmer, H. Bosch, R. J. Parker, A. J. Webb, C. S. C. Correia, N. M. Deutscher, L. G. Domingues, D. G. Feist, L. V. Gatti, E. Gloor, F. Hase, R. Kivi, Y. Liu, J. B. Miller, I. Morino, R. Sussmann, K. Strong, O. Uchino, J. Wang, and A. Zahn, “Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy retrievals, 2010–2014,” Atmos. Chem. Phys. 17 (7), 4781–4797 (2017).

    Article  ADS  Google Scholar 

  9. R. Nassar, T. G. Hill, C. A. McLinden, D. Wunch, D. B. A. Jones, and D. Crisp, “Quantifying CO2 emissions from individual power plants from space,” Geophys. Res. Lett. 44 (19), 053 (2017).

  10. C. Frankenberg, R. Pollock, R. A. M. Lee, R. Rosenberg, J.-F. Blavier, D. Crisp, C. W. O’Dell, G. B. Osterman, C. Roehl, P. O. Wennberg, and D. Wunch, “The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements,” Atmos. Meas. Tech. 8 (1), 301–313 (2015).

    Article  Google Scholar 

  11. D. Wunch, P. O. Wennberg, G. Osterman, B. Fisher, B. Naylor, C. M. Roehl, C. O' Del, L. Mandrake, C. Viatte, M. Kiel, D. V. T. Griffith, N. M. Deutscher, V. A. Velazco, J. Notholt, T. Warneke, C. Petri, De. Martine, ShaM. K. Maziere, R. Sussmann, M. Rettinger, D. Pollard, J. Robinson, I. Morino, O. Uchino, F. Hase, T. Blumenstock, D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci, J. Podolske, P. W. Hillyard, Sh. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. Garcia, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, and A. Eldering, “Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) measurements with TCCON,” Atmos. Meas. Tech. 10 (6), 2209–2238 (2017).

    Article  Google Scholar 

  12. I. G. Enting, Inverse Problems in Atmospheric Constituent Transport (Cambridge University Press, New York, 2002).

    Book  Google Scholar 

  13. S. Barthlott, M. Schneider, F. Hase, A. Wiegele, E. Christner, Y. Gonzalez, T. Blumenstock, S. Dohe, O. E. Garcia, E. Sepulveda, K. Strong, J. Mendonca, D. Weaver, M. Palm, N. M. Deutscher, T. Warneke, J. Notholt, B. Lejeune, E. Mahieu, N. Jones, D. W. T. Grif-fith, V. A. Velazco, D. Smale, J. Robinson, R. Kivi, P. Heikkinen, and U. Raffalski, “Using retrievals for assessing the long-term consistency of NDACC/FTIR data sets,” Atmos. Meas. Tech 8 (3), 1555–1573 (2015).

    Article  Google Scholar 

  14. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, “Quality assessment of integrated water vapour measurements at St. Petersburg site, Russia: FTIR vs. MW and GPS techniques,” Atmos. Meas. Tech. 10 (11), 4521–4536 (2017).

    Article  Google Scholar 

  15. M. V. Makarova, D. K. Arabadzhyan, S. Ch. Foka, N. N. Paramonova, A. V. Poberovskii, Yu. M. Timofeev, N. V. Pankratova, and V. S. Rakitin, “Estimation of nocturnal area fluxes of carbon cycle gases in Saint Petersburg suburbs,” Rus. Meteorol. Hydrol. 43 (7), 449–455 (2018).

    Article  Google Scholar 

  16. S. O’Shea, G. Allen, Z. Fleming, S. Bauguitte, J. C. Percival, M. Gallagher, J. Lee, C. Helfter, and E. Nemitz, “Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012,” J. Geophys. Res.: Atmos. 119 (8), 4940–4952 (2014).

    Article  ADS  Google Scholar 

  17. A. Font, C. S. Grimmond, S. Kotthaus, J. A. Morgui, C. Stockdale, E. O’Connor, M. Priestman, and B. Barratt, “Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London,” Environ. Pollut. 196 (1), 98–106 (2015).

    Article  Google Scholar 

  18. E. A. Kort, C. Frankenberg, C. E. Miller, and T. Oda, “Space-based observations of megacity carbon dioxide,” Geophys. Rev. Lett. 39 (17), L17806 (2012).

  19. M. K. Kumar and S. M. Nagendra, “Quantification of anthropogenic CO2 emissions in a tropical urban environment,” Atmos. Environ. 125 (1), 272–282 (2016).

    Article  ADS  Google Scholar 

  20. F. Hase, M. Frey, T. Blumenstock, J. Groß, M. Kiel and R. Kohlhepp, G. Mengistu Tsidu, K. Schafer, K. M. Sha, and J. Orphal, “Use of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin,” Atmos. Meas. Tech. 8 (7), 305–3068 (2015).

    Article  Google Scholar 

  21. S. Newman, S. Jeong, M. L. Fischer, X. Xu, C. L. Haman, B. Lefer, S. Alvarez, B. Rappenglueck, E. A. Kort, A. E. Andrews, J. Peischl, K. R. Gurney, C. E. Miller, and Y. L. Yung, “Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010,” Atmos. Chem. Phys. 13 (8), 4359–4372 (2013).

    Article  ADS  Google Scholar 

  22. I. A. Serebritskii, Report on the Ecological Situation in Saint Petersburg in 2017 (Sezam-print, Saint Petersburg, 2018) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Virolainen.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, Y.M., Berezin, I.A., Virolainen, Y.A. et al. Estimates of Anthropogenic CO2 Emissions for Moscow and St. Petersburg Based on OCO-2 Satellite Measurements. Atmos Ocean Opt 33, 656–660 (2020). https://doi.org/10.1134/S1024856020060238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060238

Keywords:

Navigation