Skip to main content
Log in

Interrelation between Dynamics of Gas Composition and Meteorological Parameters in the Region of Tomsk

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

In this paper, we studied the interrelation between the variations in CH4, CO, CO2, NO, NO2, O3, and SO2 concentrations, and the number concentration of aerosol with particle diameters larger than 0.4 μm, and the following meteorological parameters: air temperature, atmospheric pressure, wind direction and speed, total solar radiation and ultraviolet radiation in the wavelength range 295–320 nm, relative humidity, and partial water vapor pressure. For this, we used the air composition monitoring data (for the period 1993–2018) from the Tropospheric Ozone Research (TOR) station in the region of Tomsk Akademgorodok.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Bodeker, O. Boucher, W. D. Collins, T. J. Conway, E. Dlugokencky, J. W. Elkins, D. Etheridge, P. Foukal, P. Fraser, M. Geller, F. Joos, C. D. Keeling, R. Keeling, S. Kinne, K. Lassey, U. Lohmann, A. C. Manning, S. Montzka, D. Oram, K. O’Shaughnessy, S. Piper, G.-K. Plattner, M. Ponater, N. Ramankutty, G. Reid, D. Rind, K. Rosenlof, R. Sausen, D. Schwarzkopf, S. K. Solanki, G. Stenchikov, N. Stuber, T. Takemura, C. Textor, R. Wang, R. Weiss, and T. Whorf, Changes in Atmospheric Constituents and in Radiative Forcing. Report No. 5 (IPCC, 2014), p. 129–234.

  2. M. Holmberg, T. Aalto, A. Akujarvi, A. N. Arslan, I. Bergstrom, K. Bottcher, I. Lahtinen, A. Makela, T. Markkanen, F. Minunno, M. Peltoniemi, K. Rankinen, P. Vihervaara, and M. Forsius, “Ecosystem services related to carbon cycling—modeling present and future impacts in boreal forests,” Front. Plant Sci. 10 (3), 14 (2019).

    Article  Google Scholar 

  3. J. F. Dean, J. J. Middelburg, T. Rockmann, R. Aerts, L. G. Blauw, M. Egger, M. S. M. Jetten, A. E. E. de Jong, O. H. Meisel, O. Rasigraf, C. P. Slomp, M. H. Zandt, and A. J. Dolman, “Methane feedbacks to the global climate system in a warmer world,” Rev. Geophys. 56 (1), 207–250 (2018).

    Article  ADS  Google Scholar 

  4. P. S. Romer, K. C. Duffey, P. J. Wooldridge, H. M. Allen, B. R. Ayres, S. S. Brown, W. H. Brune, J. D. Crounse, J. de Gouw, D. C. Draper, P. A. Feiner, J. L. Fry, A. H. Goldstein, A. Koss, P. K. Misztal, T. B. Nguyen, K. Olson, A. P. Teng, P. O. Wennberg, R. J. Wild, L. Zhang, and R. C. Cohen, “The lifetime of nitrogen oxides in an isoprene-dominated forest,” Atmos. Chem. Phys. 16 (12), 7623–7637 (2016).

    Article  ADS  Google Scholar 

  5. L. Pace, L. Boccacci, M. Casilli, P. Di Carlo, and S. Fattorini, “Correlations between weather conditions and airborne pollen concentration and diversity in a mediterranean high-altitude site disclose unexpected temporal patterns,” Aerobiologia 34 (1), 75–87 (2018).

    Article  Google Scholar 

  6. L. Y. Yeung, L. T. Murray, P. Martinerie, E. Witrant, H. Hu, A. Banerjee, A. Orsi, and J. Chappellaz, “Isotopic constraint on the twentieth-century increase in tropospheric ozone,” Nature 570 (7760), 224–227 (2019).

    Article  ADS  Google Scholar 

  7. R. G. Derwent, A. J. Manning, P. G. Simmonds, T. G. Spain, and S. O’Doherty, “Long-term trends in ozone in baseline and European regionally-polluted air at Mace Head, Ireland over a 30-year period,” Atmos. Environ. 179, 279–287 (2018).

    Article  ADS  Google Scholar 

  8. G. A. Meehl, C. Tebaldi, S. Tilmes, J.-F. Lamarque, S. Bates, A. Pendergrass, and D. Lombardozzi, “Future heat waves and surface ozone,” Environ. Res. Lett. 13 (6), 9 (2018).

    Article  Google Scholar 

  9. B. Wang, H. H. Shugart, and M. T. Lerdau, “Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere,” Environ. Res. Lett. 12 (8), 9 (2017).

    Google Scholar 

  10. F. J. Bohn, F. May, and A. Huth, “Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests,” Biogeosciences 15 (6), 1795–1813 (2018).

    Article  ADS  Google Scholar 

  11. I. L. Karol’ and A. I. Reshetnikov, “Greenhouse gases, aserosols, and climate,” Trudy GGO, No. 573, 5–38 (2014).

    Google Scholar 

  12. V. Humphrey, J. Zscheischler, P. Ciais, L. Gudmundsson, S. Sitch, and S. I. Seneviratne, “Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage,” Nature 560 (7720), 628–631 (2018).

    Article  ADS  Google Scholar 

  13. P. B. Reich, K. M. Sendall, A. Stefanski, R. L. Rich, S. E. Hobbie, and R. A. Montgomery, “Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture,” Nature 562 (7726), 263–267 (2018).

    Article  ADS  Google Scholar 

  14. A. D. Richardson, K. Hufkens, T. Milliman, D. M. Aubrecht, M. E. Furze, B. Seyednasrollah, M. B. Krassovski, J. M. Latimer, W. R. Nettles, R. R. Heiderman, J. M. Warren, and P. J. Hanson, “Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures,” Nature 560 (7718), 368–371 (2018).

    Article  ADS  Google Scholar 

  15. Z. Li, J. Xia, A. Ahlstrom, A. Rinke, C. Koven, D. J. Hayes, Ji. Duoying, G. Zhang, G. Krinner, G. Chen, W. Cheng, J. Dong, J. Liang, J. C. Moore, L. Jiang, L. Yan, P. Ciais, S. Peng, Y.-P. Wang, X. Xiao, Z. Shi, A. D. McGuire, and Y. Luo, “Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands,” Environ. Res. Lett. 13 (12), 10 (2018).

    Google Scholar 

  16. M. G. De Kauwe, B. E. Medlyn, A. J. Pitman, J. E. Drake, A. Ukkola, A. Griebel, E. Pendall, S. Prober, and M. Roderick, “Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes,” Biogeosciences 16 (4), 903–916 (2019).

    Article  ADS  Google Scholar 

  17. J. Chi, M. B. Nilsson, N. Kljun, J. Wallerman, J. E. S. Fransson, H. Laudon, T. Lundmark, and M. Peichl, “The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden,” Agricult. Forest Meteorol. 274, 29–41 (2019).

    Article  ADS  Google Scholar 

  18. P. Jing, Z. Lu, and A. L. Steiner, “The ozone-climate penalty in the midwestern U.S.,” Atmos. Environ. 170, 130–142 (2017).

    Article  ADS  Google Scholar 

  19. N. Hunter, R. J. Rendell, M. P. Higlett, J. B. O’Hagan, and R. G. E. Haylock, “Relationship between erythema effective UV radiant exposure, total ozone, cloud cover and aerosols in southern England, UK,” Atmos. Chem. Phys. 19 (1), 683–699 (2019).

    Article  ADS  Google Scholar 

  20. K. V. Varotsos, C. Giannakopoulos, and M. Tombrou, “Ozone-temperature relationship during the 2003 and 2014 heatwaves in Europe,” Region. Environ. Change 19 (4), 12 (2019).

    Article  Google Scholar 

  21. A. V. Dzyuba, A. V. Eliseev, and I. I. Mokhov, “Estimates of changes in the rate of methane sink from the atmosphere under climate warming,” Izv. Atmos. Ocean. Phys. 48 (3), 332–342 (2012).

    Article  Google Scholar 

  22. A. Lohila, T. Aalto, M. Aurela, J. Hatakka, J.-P. Tuovinen, J. Kilkki, T. Penttila, J. Vuorenmaa, P. Hanninen, R. Sutinen, Y. Viisanen, and T. Laurila, “Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year,” Geophys. Rev. Lett. 43 (6), 2946–2953 (2016).

    Article  ADS  Google Scholar 

  23. X. F. Xu, H. Q. Tian, G. S. Chen, M. L. Liu, W. Ren, C. Q. Lu, and C. Zhang, “Multifactor controls on terrestrial N2O flux over North America from 1979 through 2010,” Biogeosciences 9 (4), 1351–1366 (2012).

    Article  ADS  Google Scholar 

  24. P. S. Romer, K. C. Duffey, P. J. Wooldridge, E. Edgerton, K. Baumann, P. A. Feiner, D. O. Miller, W. H. Brune, A. R. Koss, J. A. de Gouw, P. K. Misztal, A. H. Goldstein, and R. C. Cohen, “Effects of temperature-dependent NOx emissions on continental ozone production,” Atmos. Chem. Phys. 18 (4), 2601–2614 (2018).

    Article  ADS  Google Scholar 

  25. Y. Gong, J. Wu, J. Vogt, T. B. Le, and T. Yuan, “Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland,” Atmosphere 9 (12), 13 (2018).

    Article  Google Scholar 

  26. D. Bruhn, K. R. Albert, T. N. Mikkelsen, and P. Ambus, “UV-induced carbon monoxide emission from living vegetation,” Biogeosciences 10 (12), 7877–7882 (2013).

    Article  ADS  Google Scholar 

  27. T. R. Lee, S. F. J. De Wekker, S. Pal, A. E. Andrews, and J. Kofler, “Meteorological controls on the diurnal variability of carbon monoxide mixing ratio at a mountaintop monitoring site in the Appalachian Mountains,” Tellus 67. https://doi.org/10.3402/tellusb.v67.25659

  28. A. V. Eliseev, “Influence of sulfur compounds on the terrestrial carbon cycle,” Izv. Atmos. Ocean. Phys. 51 (6), 599–608 (2015).

    Article  Google Scholar 

  29. I. N. Kuznetsova, I. Yu. Shalygina, M. I. Nakhaev, A. A. Glazkova, P. V. Zakharova, E. A. Lezina, and A. M. Zvyagintsev, “Meteorological factors adverse to the air quality,” Trudy Gidromettsentra Rossii, Is. 351, 154–172 (2014).

    Google Scholar 

  30. G. J. Luo, N. Bruggemann, B. Wolf, R. Gasche, R. Grote, and K. Butterbach-Bahl, “Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Hoglwald Forest, Germany,” Biogeosciences 9 (5), 1741–1763 (2012).

    Article  ADS  Google Scholar 

  31. O. S. Pokrovsky, L. S. Shirokova, S. N. Kirpotin, S. P. Kulizhsky, and S. N. Vorobiev, “Impact of Western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in Thaw Lakes of discontinuous permafrost zone,” Biogeosciences 10 (8), 5349–5365 (2013).

    Article  ADS  Google Scholar 

  32. R. R. Buchholz, C. Paton-Walsh, D. W. T. Griffith, D. Kubistin, C. Caldow, J. A. Fisher, N. M. Deutscher, G. Kettlewell, M. Riggenbach, R. Macatangay, P. B. Krummel, and R. L. Langenfelds, “Source and meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site,” Atmos. Environ. 126, 274–280 (2016).

    Article  ADS  Google Scholar 

  33. Z. Zhao, S. Dong, X. Jiang, S. Liu, H. Ji, Y. Li, Y. Han, and W. Sha, “Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau,” Sci. Total Environ. 592, 565–572 (2017).

    Article  ADS  Google Scholar 

  34. A. V. Timokhina, A. S. Prokushkin, A. V. Panov, R. A. Kolosov, N. V. Sidenko, I. Lavrich, and M. Khaimann, “Interannual variability of atmospheric CO2 concentrations over central Siberia from ZOTTO data for 2009–2015,” Rus. Meteorol. Hydrol. 43 (5), 288–294 (2015).

    Article  Google Scholar 

  35. C. Le Quere, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. A. Pickers, J. I. Korsbakken, G. P. Peters, J. G. Canadell, A. Arneth, V. K. Arora, L. Barbero, A. Bastos, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, S. C. Doney, T. Gkritzalis, D. S. Goll, I. Harris, V. Haverd, F. M. Hoffman, M. Hoppema, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, T. Johannessen, C. D. Jones, E. Kato, R. F. Keeling, K. K. Goldewijk, P. Landschutzer, N. Lefevre, S. Lienert, Z. Liu, D. Lombardozzi, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, C. Neill, A. Olsen, T. Ono, P. Patra, A. Peregon, W. Peters, P. Peylin, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, M. Rocher, C. Rodenbeck, U. Schuster, J. Schwinger, R. Seferian, I. Skjelvan, T. Steinhoff, A. Sutton, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, N. Viovy, A. P. Walker, A. J. Wiltshire, R. Wright, S. Zaehle, and B. Zheng, “Global carbon budget 2018,” Earth Syst. Sci. Data 10 (4), 2141–2194 (2018).

    Article  ADS  Google Scholar 

  36. D. Holl, C. Wille, T. Sachs, P. Schreiber, B. R. K. Runkle, L. Beckebanze, M. Langer, J. Boike, E.-M. Pfeiffer, I. Fedorova, D. Y. Bolshianov, M. N. Grigoriev, and L. Kutzbach, “A long-term (2002 to 2017) record of closed-path and open-path eddy covariance CO2 net ecosystem exchange fluxes from the Siberian Arctic,” Earth Syst. Sci. Earth, Data 11 (1), 221–240 (2019).

    Google Scholar 

  37. E. A. Barnes, A. M. Fiore, and L. W. Horowitz, “Detection of trends in surface ozone in the presence of climate variability,” J. Geophys. Res.: Atmos. 121 (10), 6112–6129 (2016).

    Article  ADS  Google Scholar 

  38. K.-L. Chang, I. Petropavlovskikh, O. R. Cooper, M. G. Schultz, and T. Wang, “Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia,” Elem. Sci. Anth 5, 50 (2017). https://doi.org/10.1525/elementa.243

    Article  Google Scholar 

  39. Y. Yan, A. Pozzer, N. Ojha, J. Lin, and J. Lelieveld, “Analysis of European ozone trends in the period 1995–2014,” Atmos. Chem. Phys. 18 (8), 5589–5605 (2018).

    Article  ADS  Google Scholar 

  40. Y. Zhou, H. Mao, K. Demerjian, C. Hogrefe, and J. Liu, “Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the northeast US,” Atmos. Environ. 164, 309–324 (2017).

    Article  ADS  Google Scholar 

  41. T. Li, W. Zhang, Q. Zhang, Y. Lu, G. Wang, Z. Niu, M. Raivonen, and T. Vesala, “Impacts of climate and reclamation on temporal variations in CH4 emissions from different wetlands in China: From 1950 to 2010,” Biogeosciences 12 (23), 6853–6868 (2015).

    Article  ADS  Google Scholar 

  42. L. S. Basso, L. V. Gatti, M. Gloor, J. B. Miller, L. G. Domingues, C. S. C. Correia, and V. F. Borges, “Seasonality and interannual variability of CH4 fluxes from the eastern Amazon basin inferred from atmospheric mole fraction profiles,” J. Geophys. Res.: Atmos. 121 (1), 168–184 (2016).

    Article  ADS  Google Scholar 

  43. A. Ya. Arabov, A. N. Borovskii, N. F. Elanskii, A. S. Elokhov, I. A. Sennik, and V. V. Savinykh, “Nitrogen dioxide in the north Caucasus atmosphere: 30 years of observations,” Dokl. Earth Sci. 446 (1), 1121–1126 (2012).

    Article  ADS  Google Scholar 

  44. J. Storkey, A. J. Macdonald, P. R. Poulton, T. Scott, I. H. Kohler, H. Schnyder, K. W. T. Goulding, and M. J. Crawley, “Grassland biodiversity bounces back from long-term nitrogen addition,” Nature 528 (7582), 401–404 (2015).

    Article  ADS  Google Scholar 

  45. S. Sarkkola, M. Nieminen, H. Koivusalo, A. Lauren, P. Kortelainen, T. Mattsson, M. Palviainen, S. Piirainen, M. Star, and L. Finer, “Trends in concentrations and export of nitrogen in boreal forest streams,” Boreal Environ. Res. 17 (2), 85–101 (2012).

    Google Scholar 

  46. M. Yu. Arshinov, B. D. Belan, V. V. Zuev, V. E. Zuev, V. K. Kovalevskii, A. V. Ligotskii, V. E. Meleshkin, M. V. Panchenko, E. V. Pokrovskii, A. N. Rogov, D. V. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Ocean. Opt. 7 (8), 580–584 (1994).

    Google Scholar 

  47. D. K. Davydov and B. D. Belan, P. N. Antokhin, O. Yu. Antokhina, V. V. Antonovich, V. G. Arshinova, M. Yu. Arshinov, A. Yu. Akhlyostin, S. B. Belan, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. Z. Fazliev, and A. V. Fofonov, “Monitoring of atmospheric parameters: 25 Years of the Tropospheric Ozone Research Station of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences,” Atmos. Ocean. Opt. 32 (2), 180–192 (2019).

    Article  Google Scholar 

  48. A. D. Nasledov, Mathematical Methods for Psychological Research. Data Analysis and Interpretation (Rech’, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  49. B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian]

    Google Scholar 

  50. T.-M. Fu, Y. Zheng, F. Paulot, J. Mao, and R. M. Yantosca, “Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States,” Nat. Clim. Change, No. 3, 5 (2015).

    Google Scholar 

  51. D. Jasaitis, V. Vasiliauskien, R. Chadysien, and M. Peciulien, “Surface ozone concentration and its relationship with UV radiation, meteorological parameters and radon on the eastern coast of the Baltic Sea,” Atmosphere 7 (2), 11 (2016).

    Article  Google Scholar 

  52. D. J. Du Preez, J. V. Ajtic, H. Bencherif, N. Begue, J.‑M. Cadet, and C. Y. Wright, “Spring and summer time ozone and solar ultraviolet radiation variations over Cape Point, South Africa,” Ann. Geophys. 37 (2), 129–141 (2019).

    Article  ADS  Google Scholar 

  53. X.-M. Hu, M. Xue, F. Kong, and H. Zhang, “Meteorological conditions during an ozone episode in Dallas—Fort Worth, Texas, and impact of their modeling uncertainties on air quality prediction,” J. Geophys. Res.: Atmos. 124 (4), 1941–1961 (2019).

    Article  ADS  Google Scholar 

  54. B. D. Belan and T. K. Sklyadneva, “Tropospheric ozone. 4. Photochemical formation of tropospheric ozone: the role of solar radiation,” Atmos. Ocean. Opt. 21 (10), 746–754 (2008).

    Google Scholar 

  55. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, A. V. Kozlov, O. A. Krasnov, O. V. Praslova, T. M. Rasskazchikova, D. E. Savkin, G. N. Tolmachev, and A. V. Fofonov, “Diurnal dynamics of ozone vertical distribution in the atmospheric boundary layer near Tomsk city,” Atmos. Ocean. Opt. 26 (8), 673–678 (2013).

    Article  Google Scholar 

  56. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Generation of ozone in the surface air layer versus air temperature,” Atmos. Ocean. Opt. 31 (2), 187–196 (2018).

    Article  Google Scholar 

  57. B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Study of the relationship between snow cover and ozone concentration in the surface air layer,” Atmos. Ocean. Opt. 31 (8), 665–669 (2018).

    Article  Google Scholar 

  58. L. T. Matveev, Atmospheric Physics (Gidrometeoizdat, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  59. B. D. Belan and D. E. Savkin, “The role of air humidity in variations in near-surface ozone concentration,” Atmos. Ocean. Opt. 32 (5), 586–589 (2019).

    Article  Google Scholar 

  60. B. D. Belan, “Dynamics of the atmospheric mixing layer as it follows from data on aerosol,” Atmos. Ocean. Opt. 7 (8), 558–562 (1994).

    Google Scholar 

  61. M. Yu. Arshinov and B. D. Belan, “Diurnal behavior of the concentration of fine and ultrafine aerosol,” Atmos. Ocean. Opt. 13 (11), 909–916 (2000).

    Google Scholar 

  62. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. Inoue, Sh. Sh. Maksyutov, T. Machida, and A. V. Fofonov, “Spatio-temporal variability of CO2 and CH4 concentration in the surface atmospheric layer over West Siberia,” Atmos. Ocean. Opt. 22 (1), 84–93 (2009).

    Article  Google Scholar 

  63. V. M. Ivakhov, N. N. Paramonova, V. I. Privalov, A. V. Zinchenko, M. A. Loskutova, A. P. Makshtas, V. A. Kustov, T. Laurila, M. Aurela, and E. Asmi, “Atmospheric concentration of carbon dioxide at Tiksi and Cape Baranov Stations in 2010–2017,” Rus. Meteor. Hydrol. 44 (4), 291–299 (2019).

    Article  Google Scholar 

  64. T. P. Kandel, P. E. Laerke, and L. Elsgaard, “Annual emissions of CO2, CH4 and N2O from a temperate peat bog: Comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato,” Agricult. Forest Meteorol. 256-257, 470–481 (2018).

    Article  ADS  Google Scholar 

  65. B. D. Belan, “Ozone in troposphere. 6. Compounds of ozone cycles,” Atmos. Ocean. Opt. 22 (4), 358–379 (2009).

    Article  Google Scholar 

  66. E. P. Yausheva, M. V. Panchenko, V. S. Kozlov, S. A. Terpugova, and D. G. Chernov, “The influence of the city on the atmospheric aerosol characteristics in Tomsk Akademgorodok in transitional seasons,” Opt. Atmos. Okeana 27 (11), 981–988 (2014).

    Google Scholar 

  67. M. V. Panchenko, V. V. Pol’kin, Vas. V. Pol’kin, V. S. Kozlov, E. P. Yausheva, and V. P. Shmargunov, “Size distribution of dry matter of particles in the surface atmospheric layer in the suburban region of Tomsk within the empirical classification of aerosol weather types,” Atmos. Ocean. Opt. 32 (6), 655–662 (2019).

    Article  Google Scholar 

  68. M. Yu. Arshinov, B. D. Belan, V. K. Kovalevskii, and G. N. Tolmachev, “Results of climatic-ecological monitoring at TOR station. III. Atmospheric aerosol,” Atmos. Ocean. Opt. 8 (8), 1185–1190 (1995).

    Google Scholar 

  69. S. P. Khromov, Foundation for Synoptic Meteorology (Gidrometizdat, Leningrad, 1948) [in Russian].

    Google Scholar 

  70. V. I. Vorob’ev, Synoptic Meteorology (Gidrometizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  71. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, N. V. Dudorova, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Study of the composition of air masses of different types,” Atmos. Ocean. Opt. 32 (1), 72–79 (2019).

    Article  Google Scholar 

  72. P. N. Antokhin, M. Yu. Arshinov, V. G. Arshinova, B. D. Belan, D. K. Davydov, T. M. Rasskazchikova, A. V. Fofonov, G. Inoue, T. Machida, Ko. Shimoyama, and Sh. Sh. Maksutov, “CO2 concentration variation above the West Siberia area in different seasons during passes of atmospheric fronts,” Atmos. Ocean. Opt. 26 (1), 24–31 (2013).

    Article  Google Scholar 

  73. J. Zhang, L. Wu, G. Huang, and M. Notaro, “Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest,” J. Geophys. Res. D 116 (2011). https://doi.org/10.1029/2010JD014738

  74. M. A. Garcia, M. L. Sanchez, I. A. Perez, M. I. Ozores, and N. Pardo, “Influence of atmospheric stability and transport on CH4 concentrations in northern Spain,” Sci. Total Environ. 550, 157–166 (2016).

    Article  ADS  Google Scholar 

  75. C. Ordonez, D. Barriopedro, R. Garcia-Herrera, P. M. Sousa, and J. L. Schnell, “Regional responses of surface ozone in Europe to the location of high-latitude blocks and subtropical ridges,” Atmos. Chem. Phys. 17 (4), 3111–3131 (2017).

    Article  ADS  Google Scholar 

  76. R. Atkinson, D. L. Baulch, R. A. Cok, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry; Volume 1—Gas phase reactions of Ox, HOx, NOx and SOx species,” Atmos. Chem. Phys. 4 (6), 1461–1738 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

The paper was prepared using data obtained using the infrastructure of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, under state order no. АААА-А17-117021310142-5, including the Center for Collective Use Atmosfera. The analysis of aerosol dynamics was supported by the Russian Foundation for Basic Research (grant no. 19-05-50 024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Arshinov or B. D. Belan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antokhin, P.N., Antokhina, O.Y., Antonovich, V.V. et al. Interrelation between Dynamics of Gas Composition and Meteorological Parameters in the Region of Tomsk. Atmos Ocean Opt 33, 629–637 (2020). https://doi.org/10.1134/S1024856020060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020060044

Keywords:

Navigation