Skip to main content
Log in

Reductive Fractionation of Larch Wood in Supercritical Ethanol in the Presence of a Bifunctional Ru/C Catalyst and Hydrogen Donors

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Lignin is a large-scale waste product of hydrolysis and the pulp-and-paper industries. The problem of lignin utilization is addressed by developing techniques for the comprehensive processing of wood biomass that are based on preliminary catalytic fractionation into its key components, which are subsequently used for obtaining target products. Hemicelluloses of larch wood are known to undergo effective depolymerization (~95 wt %) in ethanol at 250°C. Using hydrogen in combination with a catalyst enables us to increase the lignin conversion to 61 wt %, with 47 wt % of the cellulose left in the solid residue. The highest lignin conversion (67 wt %) is achieved using formic acid, but there is undesirable cellulose depolymerization (conversion, 66 wt %) under these conditions. The main monomer products of the catalytic conversion of lignin are 4-propenylguaiacol and 4-propylguaiacol. The content of 4-propenylguaiacol among the liquid products obtained using ethanol and formic acid as reducing agents can be as high as 36 and 33 rel %, respectively. The content of 4-propylguaiacol among the liquid products obtained using hydrogen grows to 33 rel % when a catalyst is used. This work describes the first study of the catalytic fractionation of larch wood in supercritical ethanol in the presence of the bifunctional 3%Ru/C catalyst containing acidic groups. The aim is to identify the effect of the catalyst and the nature of the hydrogen donor (ethanol, H2, or formic acid) on the yield and composition of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kamm, B., Gruber, P.R., and Kamm, M., in Biorefineries—Industrial Processes and Products: Status Quo and Future Directions, Weinheim: Wiley-VCH, 2006, vol. 1, pp. 1–40.

    Google Scholar 

  2. Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.F., Beckham, G.T., and Sels, B.F., Chem. Soc. Rev., 2018, vol. 47, no. 3, pp. 852–908. https://doi.org/10.1039/C7CS00566K

    Article  CAS  PubMed  Google Scholar 

  3. Tarabanko, V.E., Kaygorodov, K.L., Skiba, E.A., Tarabanko, N., Chelbina, Yu.V., Baybakova, O.V., Kuznetsov, B.N., and Djakovitch, L., J. Wood Chem. Technol., 2017, vol. 37, no. 1, pp. 43–51. https://doi.org/10.1080/02773813.2016.1235583

    Article  CAS  Google Scholar 

  4. Kuznetsov, B.N., Chesnokov, N.V., Yatsenkova, O.V., Sharypov, V.I., Garyntseva, N.V., Ivanchenko, N.M., and Yakovlev, V.A., Wood Sci. Technol., 2017, vol. 51, no. 5, pp. 1189–1208. https://doi.org/10.1007/s00226-017-0926-5

    Article  CAS  Google Scholar 

  5. Ferrini, P., Rinaldi, R., Angew. Chem., Int. Ed., 2014, vol. 53, no. 33, pp. 8634–8639. https://doi.org/10.1002/anie.201403747

    Article  CAS  Google Scholar 

  6. Galkin, M.V., Smit, A.T., Subbotina, E., Artemenko, K.A., Bergquist, J., Huijgen, W.J.J., and Samec, J.S.M., ChemSusChem, 2016, vol. 9, no. 23, pp. 3280–3287. https://doi.org/10.1002/cssc.201600648

    Article  CAS  PubMed  Google Scholar 

  7. Parsell, T., Yohe, S., Degenstein, J., Jarrell, T., Klein, I., Gencer, E., Hewetson, B., Hurt, M., Kim, J.I., Choudhari, H., Saha, B., Meilan, R., Mosier, N., Ribeiro, F., Delgass, W.N., Chapple, C., Kenttämaa, H.I., Agrawa, R., and Abu-Omar, M.M., Green Chem., 2015, vol. 17, no. 3, pp. 1492–1499. https://doi.org/10.1039/C4GC01911C

    Article  CAS  Google Scholar 

  8. Van den Bosch, S., Schutyser, W., Vanholme, R., Driessen, T., Koelewijn, S.-F., Renders, T., De Mees-ter, B., Huijgen, W.J.J., Dehaen, W., Courtin, C.M., Lagrain, B., Boerjan, W., and Sels, B.F., Energy Environ. Sci., 2015, vol. 8, no. 6, pp. 1748–1763. https://doi.org/10.1039/C5EE00204D

    Article  CAS  Google Scholar 

  9. Renders, T., Schutyser, W., Van den Bosch, S., Koelewijn, S.-F., Vangeel, T., Courtin, C.M., and Sels, B.F., ACS Catal., 2016, vol. 6, no. 3, pp. 2055–2066. https://doi.org/10.1021/acscatal.5b02906

    Article  CAS  Google Scholar 

  10. Luo, H., Klein, I.M., Jiang, Y., Zhu, H., Liu, B., I. Kenttämaa, H.I., and Abu-Omar, M.M., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 4, pp. 2316–2322. https://doi.org/10.1021/acssuschemeng.5b01776

    Article  CAS  Google Scholar 

  11. Tekin, K., Hao, N., Karagoz, S., and Ragauskas, A.J., ChemSusChem, 2018, vol. 11, no. 20, pp. 3559–3575. https://doi.org/10.1002/cssc.201801291

    Article  CAS  PubMed  Google Scholar 

  12. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., and Xu, J., Energy Environ. Sci., 2013, vol. 6, no. 3, pp. 994–1007. https://doi.org/10.1039/C2EE23741E

    Article  CAS  Google Scholar 

  13. Galkin, M.V. and Samec, J.S.M., ChemSusChem, 2014, vol. 7, no. 8, pp. 2154–2158. https://doi.org/10.1002/cssc.201402017

    Article  CAS  PubMed  Google Scholar 

  14. Macala, G.S., Matson, T.D., Johnson, C.L., Lewis, R.S., Iretskii, A.V., and Ford, P.C., ChemSusChem, 2009, vol. 2, no. 3, pp. 215–217. https://doi.org/10.1002/cssc.200900033

    Article  CAS  PubMed  Google Scholar 

  15. Van den Bosch, S., Schutyser, W., Koelewijn, S.-F., Renders, T., Courtin, C.M., and Sels, B.F., Chem. Commun., 2015, vol. 51, no. 67, pp. 13 158–13 161. https://doi.org/10.1039/C5CC04025F

    Article  CAS  Google Scholar 

  16. Chikunov, A.S., Shashkov, M.V., Pestunov, A.V., Kazachenko, A.S., Mishchenko, T.I., and Taran, O.P., Zh. Sib. Fed. Univ., Khim., 2018, vol. 11, no. 1, pp. 131–150.

    Google Scholar 

  17. Ayusheev, A.B., Taran, O.P., Afinogenova, I.I., Mishchenko, T.I., Shashkov, M.V., Sashkina, K.A., Semeikina, V.S., Parkhomchuk, E.V., Agabekov, V.E., and Parmon, V.N., Zh. Sib. Fed. Univ., Khim., 2016, vol. 9, no. 3, pp. 353–370.

    Google Scholar 

  18. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., and Templeton, D.W., J. Agric. Food Chem., 2010, vol. 58, no. 16, pp. 9043–9053. https://doi.org/10.1021/jf1008023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Analytical Methods in Wood Chemistry Pulping and Papermaking, Sjöström, E. and Alern, R., Eds., Berlin: Springer, 1999.

    Google Scholar 

  20. Taran, O.P., Polyanskaya, E.M., and Ogorodnikova, O.L., Descorme C., Besson M., and Parmon V.N, Catal. Ind., 2010, vol. 2, no. 4, pp. 381–386.

    Article  Google Scholar 

  21. Taran, O.P., Descorme, C., Polyanskaya, E.M., Ayusheev, A.B., Besson, M., and Parmon, V.N., Catal. Ind., 2013, vol. 5, no. 2, pp. 164–174.

    Article  Google Scholar 

  22. Anderson. J.R., Structure of Metallic Catalysts, London: Academic Press, 1975.

  23. Gromov, N.V., Zhdanok, A.A., Medvedeva, T.B., Lukoyanov, I.A., Poluboyarov, V.A., Taran, O.P., Parmon, V.N., and Timofeeva, M.N., Zh. Sib. Fed. Univ., Khim., 2019, vol. 12, no. 2, pp. 269–281. https://doi.org/10.17516/1998-2836-0125

    Article  Google Scholar 

  24. Bulushev, D.A. and Ross, J.R.H., ChemSusChem, 2018, vol. 11, no. 5, pp. 821–836. https://doi.org/10.1002/cssc.201702075

    Article  CAS  PubMed  Google Scholar 

  25. Oregui-Bengoechea, M., Gandarias, I., Arias, P.L., and Barth, T., ChemSusChem, 2017, vol. 10, no. 4, pp. 754–766. https://doi.org/10.1002/cssc.201601410

    Article  CAS  PubMed  Google Scholar 

  26. Schutyser, W., Van den Bosch, S., Renders, T., De Boe, T., Koelewijn, S.-F., Dewaele, A., Ennaert, T., Verkinderen, O., Goderis, B., Courtin, C.M., and Sels, B.F., Green Chem., 2015, vol. 17, no. 11, pp. 5035–5045. https://doi.org/10.1039/C5GC01442E

    Article  CAS  Google Scholar 

  27. Sharypov, V.I., Beregovtsova, N.G., Baryshnikov, S.V., Miroshnikova, A.V., Lavrenov, A.V., and Kuzne-tsov, B.N., Zh. Sib. Fed. Univ., Khim., 2018, vol. 1, no. 11, pp. 81–92.

    Google Scholar 

  28. Brauns, E.F. and Brauns, D.A., The Chemistry of Lignin, London: Academic Press. 1960.

    Google Scholar 

  29. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., and Barta, K., Chem. Rev., 2018, vol. 118, no. 2, pp. 614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agarwal, A., Ran, M., and Park, J.-H., Fuel Process. Technol., 2018, vol. 181, pp. 115–132. https://doi.org/10.1016/j.fuproc.2018.09.017

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out on the equipment of the Krasnoyarsk Regional Center of Research Equipment of the Federal Research Center “Krasnoyarsk Science Center SB RAS.”

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miroshnikova.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taran, O.P., Sharypov, V.I., Baryshnikov, S.V. et al. Reductive Fractionation of Larch Wood in Supercritical Ethanol in the Presence of a Bifunctional Ru/C Catalyst and Hydrogen Donors. Catal. Ind. 12, 330–342 (2020). https://doi.org/10.1134/S2070050420040091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420040091

Keywords:

Navigation