Skip to main content
Log in

Properties of Diffraction Coefficients in the Problem of Diffraction by 3D Plane Polygon. II. Application of the Method of Fundamental Components in Practical Problems

  • ELECTRODYNAMICS AND WAVE PROPAGATION
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Singular diffraction coefficients of the heuristic analytical solutions to the problem of diffraction of electromagnetic wave by a plane perfectly conducting polygon obtained with the aid of the method of fundamental components are analyzed. It is shown that fine diffraction effects (e.g., oscillations of the ratio of amplitudes of the scattered field) can be simulated for different polarizations of the incident wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. V. Vesnik, Radiotekhnika i Elektronika 65, 1052 (2020).

  2. M. V. Vesnik, J. Commun. Technol. Electron. 56 531 (2011).

    Article  Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1973).

  4. M. V. Vesnik, The Method of the Generalized Eikonal. New Approaches in the Diffraction Theory (Walter de Gruyter GmbH, Berlin, 2015).

    MATH  Google Scholar 

  5. P. Ya. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction (Sovetskoe Radio, Moscow, 1962; US Air Force Foreign Technology Division, 1–1154, 1962).

  6. M. V. Vesnik and P. Y. Ufimtsev, Electromagnetics 12 (3–4), 265 (1992).

    Article  Google Scholar 

  7. M. V. Vesnik, in Proc. Int. URSI Symp. on Electromagnetic Theory, St. Petersburg, May 23–26, 1995 (URSI Symp.), p. 407.

  8. M. V. Vesnik, Sovrem. Mat. Fundament. Napravl. 62, 32 (2016).

    Google Scholar 

  9. L. Klinkenbusch, in Proc. IEEE Antennas and Propagation Soc. Int. Symp., New York, July 3–8, 2005 (IEEE, New York, 2005), Vol. 3B, p. 163.

  10. M. V. Vesnik, Radio Sci. 49, 945 (2014).

    Article  Google Scholar 

  11. M. V. Vesnik, J. Radioelektron., No. 4 (2017). http://jre.cplire.ru/jre/apr17/7/text.pdf.

  12. M. V. Vesnik and V. I. Kalinichev, in Proc. 4th All-Russian Microwave Conf., Moscow, Nov. 29Dec. 1, 2017 (Kotelnikov IRE RAN, Moscow, 2017), p. 114.

  13. P. Ya. Ufimtsev, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 11, 912 (1968).

    Google Scholar 

  14. L. A. Vainshtein, Electromagnetic Waves, 2nd ed. (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  15. M. V. Vesnik, J. Commun. Technol. Electron. 64, 1211 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vesnik.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesnik, M.V. Properties of Diffraction Coefficients in the Problem of Diffraction by 3D Plane Polygon. II. Application of the Method of Fundamental Components in Practical Problems. J. Commun. Technol. Electron. 65, 1353–1363 (2020). https://doi.org/10.1134/S1064226920120189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920120189

Navigation