Skip to main content
Log in

Observations and Interpretation of Rotational Properties of Polar Coronal Holes Based on SDO Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The rotational effect observed in variations of areas of polar coronal holes with a period of 14 days is analyzed with SDO data by using Coronal Hole Identification with the Multithermal Emission Recognition Algorithm (CHIMERA) algorithm and the algorithm for the identification of solar structures from neural networks. A physical interpretation of the observed rotational effect associated with the asymmetry of coronal holes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bale, S.D., Badman, S.T., and Bonnell, J.W., et al., Highly structured slow solar wind emerging from an equatorial coronal hole, Nature, 2019, vol. 576, pp. 237–242.

    Article  Google Scholar 

  2. Borovik, V.N., Kaltman, T.I., and Korzhavin, A.N., The model of coronal hole with microwave observational data taking into account the solar wind flows, Proc. IAU Symp., 2004, no. 223, pp. 229–230.

  3. Bravo, S. and Otaola, J.A., Polar coronal holes and the sunspot cycle—a new method to predict sunspot numbers, Sol. Phys., 1989, vol. 122, no. 2, pp. 335–343.

    Article  Google Scholar 

  4. Cadavid, A.C., Miralles, M.P., and Romich, K., Comparison of the scaling properties of EUV intensity fluctuations in coronal hole and quiet-sun regions, Astrophys. J., 2019, vol. 886, no. 2, id 143.

  5. Cranmer, S.R., Alfvén waves in the solar corona and solar wind: An updated energy budget, Bull. Am. Astron. Soc., 2020, vol. 52, no. 1, pp. 481–501.

    Google Scholar 

  6. Cranmer, S.R., Kohl, J.L., Noci, G., et al., An empirical model of a polar coronal hole at solar minimum, Astrophys. J., 1999, vol. 511, no. 1, id 149-08.

  7. Dahlburg, R.B. and Einaudi, G., Modelling the coronal hole–coronal loop boundary as a compressible current-vortex sheet, Adv. Space Res., 2003, vol. 32, no. 6, pp. 1125–1130.

    Article  Google Scholar 

  8. Garton, T.M., Gallagher, P.T., and Murray, S.A., Automated coronal hole identification via multi-thermal intensity segmentation, J. Space Weather Space Clim., 2018, vol. 8, id A02.

  9. Hara, H., Nonthermal motions in a polar coronal hole measured with Hinode/EIS during an on-orbit partial solar eclipse on 2017 August 21, Astrophys. J., 2019, vol. 887, no. 2, id 122.

  10. Hofer, M.Y. and Storini, M., Repeated structures found after the solar maximum in the butterfly diagrams of coronal holes, AIP Conf. Proc., 2003, vol. 679, pp. 234–237.

    Article  Google Scholar 

  11. Huang, N.E., Shen, Z., Long, S.R., et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, 1998, vol. 454, pp. 903–995.

    Article  Google Scholar 

  12. Illarionov, E.A. and Tlatov, A.G., Segmentation of coronal holes in solar disk images with a convolutional neural network, Mon. Not. R. Astron. Soc., vol. 481, no. 4, pp. 5014–5021.

  13. Korolkova, O. and Solov’ev, A.A., Large-scale magnetostatic structures in the solar corona and a model of the polar coronal hole, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 7, pp. 953–958.

  14. Krieger, A.S., Timothy, A.F., and Roelof, E.C., A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 1973, vol. 29, no. 2, pp. 505–525.

    Article  Google Scholar 

  15. Lemen, J.R., Title, A.M., Akin, D.J., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 17–40.

    Article  Google Scholar 

  16. Mazumder, R., Bhowmik, P., and Nandy, D., The association of filaments, polarity inversion lines, and coronal hole properties with the sunspot cycle: An analysis of the McIntosh database, Astrophys. J., 2018, vol. 868, no. 1, id 52.

  17. Nakagawa, Y., Nozawa, S., and Shinbori, A., Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24, Earth Planets Space, 2019, vol. 71, no. 1, id 24.

  18. Norton, A.A. and Gilman, P.A., Recovering solar toroidal field dynamics from sunspot location patterns, Astrophys. J., 2005, vol. 630, no. 2, pp. 1194–1205.

    Article  Google Scholar 

  19. Norton, A.A., Raouafi, N.-E., and Petrie, G.J.D., The tilted solar dipole as observed and modeled during the 1996 solar minimum, Astrophys. J., 2008, vol. 682, no. 2, pp. 1306–1314.

    Article  Google Scholar 

  20. Obridko, V.N. and Solov’ev, A.A., Magnetohydrostatic model for a coronal hole, Astron. Rep., 2011, vol. 55, no. 12, pp. 1144–1154.

    Article  Google Scholar 

  21. Pineau de Forêts, G.A., A theoretical model of a coronal hole, Astron. Astrophys., 1979, vol. 78, no. 2, pp. 159–166.

    Google Scholar 

  22. Saqri, J., Veronig, A.M., Heinemann, S.G., et al., Differential emission measure plasma diagnostics of a long-lived coronal hole, Sol. Phys., 2020, vol. 295, no. 1, id 6.

  23. Smirnova, V.V., Korol’kova, O.A., Solov’ev, A.A., and Zhivanovich, I., Rotation properties of polar coronal holes according to SDO data, in Trudy konferentsii SSZF-2019 (Proceedings of the SSTP-2019 Conference), 2019, pp. 353–356.

  24. Soon, W., Baliunas, S., Posmentier, E.S., and Okeke, P., Variations of solar coronal hole area and terrestrial lower tropospheric air temperature from 1979 to mid-1998: Astronomical forcings of change in Earth’s climate?, New Astron., 2000, vol. 4, no. 8, pp. 563–579.

    Article  Google Scholar 

  25. Stepanian, N.N. and Shtertser, N.I., Polar coronal holes in the solar activity cycle, Adv. Space Res., 2015, vol. 55, no. 3, pp. 795–797.

    Article  Google Scholar 

  26. Summers, D., A simple model of a coronal hole, Astron. Soc. Aust. Proc., 1982, vol. 4, no. 4, pp. 379–382.

    Article  Google Scholar 

  27. Vasil’eva, V.V., Makarov, V.I., and Tlatov, A.G., Conditions for the appearance of cross-polar coronal holes, Trudy konferentsii SSZF-2003 (Proceedings of the SSTP-2003 Conference), 2003, p. 59.

  28. Wang, Y.-M. and Sheeley, N.R., The solar origin of long-term variations of the interplanetary magnetic field strength, J. Geophys. Res., 1988, vol. 93, no. A10, pp. 11227–11236.

    Article  Google Scholar 

  29. Webb, D.F., Davis, J.M., and McIntosh, P.S., Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field, Sol. Phys., 1984, vol. 92, nos. 1–2, pp. 109–132.

    Article  Google Scholar 

  30. Wyper, P.F., DeVore, C.R., Karpen, J.T., et al., A model for coronal hole bright points and jets due to moving magnetic elements, Astrophys. J., 2018, vol. 864, no. 2, id 165.

  31. Zangrilli, L., Poletto, G., Nicolosi, P., et al., Two-dimensional structure of a polar coronal hole at solar minimum: New semiempirical methodology for deriving plasma parameters, Astrophys. J., 2002, vol. 574, no. 1, pp. 477–494.

    Article  Google Scholar 

  32. Zhao, X.P., Hoeksema, J.T., and Scherrer, P.H., Prediction and understanding of the north–south displacement of the heliospheric current sheet, J. Geophys. Res.: Space Phys., 2005, vol. 110, A10101.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00168 and 18-32-00555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Smirnova.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, V.V., Riehokainen, A., Korol’kova, O.A. et al. Observations and Interpretation of Rotational Properties of Polar Coronal Holes Based on SDO Data. Geomagn. Aeron. 60, 1050–1056 (2020). https://doi.org/10.1134/S0016793220080228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220080228

Navigation